Featured Research

from universities, journals, and other organizations

Why cocaine is so addictive: Activation of specific neurons linked to alterations in cocaine reward

Date:
October 18, 2010
Source:
The Mount Sinai Hospital / Mount Sinai School of Medicine
Summary:
Researchers have discovered how cocaine corrupts the brain and becomes addictive. The findings -- the first to connect activation of specific neurons to alterations in cocaine reward -- may help researchers in developing new ways of treating those addicted to the drug.

Mount Sinai researchers have discovered how cocaine corrupts the brain and becomes addictive. These findings -- the first to connect activation of specific neurons to alterations in cocaine reward -- were published in Science on October 15. The results may help researchers in developing new ways of treating those addicted to the drug.

Related Articles


Led by Mary Kay Lobo, PhD, Postdoctoral Fellow in the Department of Neuroscience at Mount Sinai School of Medicine and first author of the study, researchers found that the two main neurons (D1 and D2) in the nucleus accumbens region of the brain, an important part of the brain's reward center, exert opposite effects on cocaine reward. Activation of D1 neurons increases cocaine reward whereas activation of D2 neurons decreases cocaine reward.

"The data suggest a model whereby chronic exposure to cocaine results in an imbalance in activity in the two nucleus accumbens neurons: increased activity in D1 neurons combined with decreased activity in D2 neurons," said Dr. Lobo. "This further suggests that BDNF-TrkB signaling in D2 neurons mediates this decreased activity in D2 neurons."

The study was conducted using optogenetics, a technology to optically control neuronal activity in freely moving rodents.

Opposite cocaine reward similar to those found when activating each neuron is achieved by disrupting brain-derived neurotrophic factor, which is a protein in the brain known for its involvement in neuronal survival, learning, and memory and drug abuse signaling through its receptor TrkB in D1 or D2 neurons.

"This new information provides fundamentally novel insight into how cocaine corrupts the brains reward center, and in particular how cocaine can differentially effect two neuronal subtypes that are heterogeneously intermixed in the nucleus accumbens," said Eric Nestler, MD, PhD, Chair of Neuroscience, Nash Family Professor, and Director of The Friedman Brain Institute at Mount Sinai and co-author on the study. "We can use this information to potentially develop new therapies for cocaine addiction, possibly aimed at altering neuronal activity selectively in either neuronal subtype."


Story Source:

The above story is based on materials provided by The Mount Sinai Hospital / Mount Sinai School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. K. Lobo, H. E. Covington, D. Chaudhury, A. K. Friedman, H. Sun, D. Damez-Werno, D. M. Dietz, S. Zaman, J. W. Koo, P. J. Kennedy, E. Mouzon, M. Mogri, R. L. Neve, K. Deisseroth, M.-H. Han, E. J. Nestler. Cell Type-Specific Loss of BDNF Signaling Mimics Optogenetic Control of Cocaine Reward. Science, 2010; 330 (6002): 385 DOI: 10.1126/science.1188472

Cite This Page:

The Mount Sinai Hospital / Mount Sinai School of Medicine. "Why cocaine is so addictive: Activation of specific neurons linked to alterations in cocaine reward." ScienceDaily. ScienceDaily, 18 October 2010. <www.sciencedaily.com/releases/2010/10/101018121438.htm>.
The Mount Sinai Hospital / Mount Sinai School of Medicine. (2010, October 18). Why cocaine is so addictive: Activation of specific neurons linked to alterations in cocaine reward. ScienceDaily. Retrieved February 26, 2015 from www.sciencedaily.com/releases/2010/10/101018121438.htm
The Mount Sinai Hospital / Mount Sinai School of Medicine. "Why cocaine is so addictive: Activation of specific neurons linked to alterations in cocaine reward." ScienceDaily. www.sciencedaily.com/releases/2010/10/101018121438.htm (accessed February 26, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Thursday, February 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Newsy (Feb. 26, 2015) People who sleep more than eight hours per night are 45 percent more likely to have a stroke, according to a University of Cambridge study. Video provided by Newsy
Powered by NewsLook.com
Mayor Says District of Columbia to Go Ahead With Pot Legalization

Mayor Says District of Columbia to Go Ahead With Pot Legalization

Reuters - News Video Online (Feb. 25, 2015) Washington&apos;s mayor says the District of Columbia will move forward with marijuana legalization, despite pushback from Congress. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Marijuana Nowhere Near As Deadly As Alcohol: Study

Marijuana Nowhere Near As Deadly As Alcohol: Study

Newsy (Feb. 25, 2015) A new study says marijuana is about 114 times less deadly than alcohol. Video provided by Newsy
Powered by NewsLook.com
Researchers Replace Damaged Hands With Prostheses

Researchers Replace Damaged Hands With Prostheses

Newsy (Feb. 25, 2015) Scientists in Austria have been able to fit patients who&apos;ve lost the use of a hand with bionic prostheses the patients control with their minds. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins