Featured Research

from universities, journals, and other organizations

Plastic monitors itself

Date:
October 19, 2010
Source:
Fraunhofer-Gesellschaft
Summary:
A new polymer-metal material that has sensory properties makes it possible to produce plastic component parts that monitor themselves. This material can be combined with various others and used in a variety of different ways.

The new composite material is a blend of synthetic and metal that has sensory properties.
Credit: Fraunhofer IFAM

A new polymer-metal material that has sensory properties makes it possible to produce plastic component parts that monitor themselves. This material can be combined with various others and used in a variety of different ways.

Researchers at Fraunhofer will be unveiling this polymer-metal composite at the ELECTRONICA 2010 fair (Nov. 9-12 in Munich, Germany).

When the storm winds blow, wind turbines have to show what they can stand up to. The wind blows hard against mills with the force of tons as the tips of the blades plow through the air at more than 200 kilometers per hour. But natural forces not only tear at wind turbines; machine components made of plastic or airplane wings must with stand substantial loads as well.

These days, we normally use sensors to measure whether these components are strained beyond capacity, and it requires a lot of effort to install them into the component parts or glue them onto their surface. Because these monitoring sensors usually only register tensile or pressure loads in a small range, we link several individual sensors to create a single network if we want to record greater areas on the component. Researchers at Fraunhofer Institute for Manufacturing Technology and Applied Material Research (IFAM) in Bremen, Germany, are now making it measurably easier to inspect these large-scale components because they have come up with a new composite material especially for components made of plastic. It has sensory properties that can be directly worked or installed into a synthetic component when it is manufactured. This material also meets design requirements.

This new composite material is a blend of plastic and metal better known as polymer-metal composite material. There is a wide range of plastics that are suited as a matrix material for manufacturing this composite, which means that it can easily be tailor-made for a whole series of purposes. But it also has other advantages. First of all, due to its synthetic character, this material can be easily processed. Beyond this, it is lightweight and conducts current and heat very well due to the high proportion of metal in it. What is especially fascinating about this material is the fact that it can be processed with conventional machines used in plastics manufacturing -- among other things, in extruders or in injection-molding machines in which the heated liquid plastic is injected into a form where it hardens immediately. Finally, this material can be laminated as a type of mat on large surfaces. In the future, researchers want to use nozzles to apply this conducting plastic as a viscous liquid to geometrically complex surfaces.

This polymer-metal composite material has its high proportion of metal and a special mixing technique to thank for its excellent sensory properties. As Arne Haberkorn, the project manager for composite developments at the Fraunhofer Institute for Manufacturing Technology and Applied Material Research, points out, "we reach a metallic filling proportion of as much as 90 percent in weight in this composite when needed," with the composite's electrical resistance changing if there are loads during operation. The signals can be drawn off with cables on the component part and passed them onto a measuring instrument for analysis.

It was a special challenge for Haberkorn and his colleagues to come up with a technique for evenly processing different metallic substances in liquid plastic. This new technique functions with a whole range of synthetic materials, for instance with polypropylene just as well as with polyamide. Haberkorn is happy to say "this means we can combine our polymer-metal composite material with various synthetics and process them into a wide range of component parts. That includes not only solid and heat-resistant, but also soft-flexible workpieces." Researchers have used various prototypes to demonstrate that the method functions and are now searching for potential industrial users.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Plastic monitors itself." ScienceDaily. ScienceDaily, 19 October 2010. <www.sciencedaily.com/releases/2010/10/101018151254.htm>.
Fraunhofer-Gesellschaft. (2010, October 19). Plastic monitors itself. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2010/10/101018151254.htm
Fraunhofer-Gesellschaft. "Plastic monitors itself." ScienceDaily. www.sciencedaily.com/releases/2010/10/101018151254.htm (accessed July 30, 2014).

Share This




More Matter & Energy News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Stranded Whale Watching Boat Returns to Boston

Stranded Whale Watching Boat Returns to Boston

Reuters - US Online Video (July 29, 2014) Passengers stuck overnight on a whale watching boat return safely to Boston. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins