Featured Research

from universities, journals, and other organizations

Breakthrough in nanocrystals growth

Date:
October 19, 2010
Source:
Carnegie Institution
Summary:
For the first time, scientists have been able to watch nanoparticles grow from the earliest stages of their formation. Nanoparticles are the foundation of nanotechnology and their performance depends on their structure, composition, and size. Researchers will now be able to develop ways to control conditions under which they are grown. The breakthrough will affect a wide range of applications including solar-cell technology and chemical and biological sensors.

This image shows nanoparticles growing.
Credit: Image courtesy of Wenge Yang

For the first time, scientists have been able to watch nanoparticles grow from the earliest stages of their formation. Nanoparticles are the foundation of nanotechnology and their performance depends on their structure, composition, and size. Researchers will now be able to develop ways to control conditions under which they are grown. The breakthrough will affect a wide range of applications including solar-cell technology and chemical and biological sensors.

The research is published in Nano Letters.

As coauthor Wenge Yang of the Carnegie Institution's Geophysical Laboratory explained: "It's been very difficult to watch these tiny particles be born and grow in the past because traditional techniques require that the sample be in a vacuum and many nanoparticles are grown in a metal-conducting liquid. So we have not been able to see how different conditions affect the particles, much less understand how we can tweak the conditions to get a desired effect."

These researchers work at the Center for Nanoscale Materials and the Advanced Photon Source (APS)-both operated by Argonne National Laboratory-and the High Pressure Synergetic Consortium (HPSynC), a program jointly run by the Geophysical Laboratory and Argonne. The scientists used high-energy X-rays from the APS to carry out diffraction studies that enabled them to gain information on the crystal structure of the materials. Thanks to the highly brilliant and high penetration of this X-ray source-the largest of its kind in the US-the researchers were able to watch the crystals grow from the beginning of their lives. The atoms scatter very short wavelength X-rays and the resulting diffraction pattern reveals the structure of these unusual particles. Quite often the chemical reaction occurs in a very short time and then evolves. The scientists used highly focused high-energy X-rays and a fast area detector, the key components to make this investigation possible. This is the first time-resolved study of the evolution of nanoparticles from the time they are born.

HPSynC, is also a part of the Energy Frontier for Research in Extreme Environments (EFree) Center, an Energy Frontier Research Center supported at Carnegie by DOE-BES. One of the missions of this center is to harness new synchrotron radiation techniques for in situ studies of materials structure and dynamics in extreme conditions and thereby to understand and produce new energy materials.

"This study shows the promise of new techniques for probing crystal growth in real time. Our ultimate goal is to use these new methods to track chemical reactions as they occur under a variety of conditions, including variable pressures and temperatures, and to use that knowledge to design and make new materials for energy applications. This is a major thrust area of the HPSynC program that we have launched in partnership with Argonne National Laboratory," remarked Russell Hemley, the director of Geophysical Laboratory.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yugang Sun, Yang Ren, Dean R. Haeffner, Jonathan D. Almer, Lin Wang, Wenge Yang, Tu T. Truong. Nanophase Evolution at Semiconductor/Electrolyte Interface in Situ Probed by Time-Resolved High-Energy Synchrotron X-ray Diffraction. Nano Letters, 2010; 10 (9): 3747 DOI: 10.1021/nl102458k

Cite This Page:

Carnegie Institution. "Breakthrough in nanocrystals growth." ScienceDaily. ScienceDaily, 19 October 2010. <www.sciencedaily.com/releases/2010/10/101018163108.htm>.
Carnegie Institution. (2010, October 19). Breakthrough in nanocrystals growth. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2010/10/101018163108.htm
Carnegie Institution. "Breakthrough in nanocrystals growth." ScienceDaily. www.sciencedaily.com/releases/2010/10/101018163108.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins