Featured Research

from universities, journals, and other organizations

Direct laser cooling of molecules

Date:
October 21, 2010
Source:
Optical Society of America
Summary:
Cooling molecules with lasers is harder than cooling individual atoms with lasers. The very process of laser cooling, in which atoms are buffeted by thousands of photons, was thought by many to be impossible for molecules since photons, instead of slowing and cooling the molecules, could actually excite internal motions such as rotations and vibrations. Consequently, to get cold molecules one method is to first cool atoms and then combine them into molecules. Now physicists have developed a way to cool molecules directly with laser light using three lasers instead of the two typically needed for atoms.

Cooling molecules with lasers is harder than cooling individual atoms with lasers. The very process of laser cooling, in which atoms are buffeted by thousands of photons, was thought by many to be impossible for molecules since photons, instead of slowing and cooling the molecules, could actually excite internal motions such as rotations and vibrations. Consequently, to get cold molecules one method is to first cool atoms and then combine them into molecules.

Now Yale physicist David DeMille and his team have developed a way to cool molecules directly with laser light using three lasers instead of the two typically needed for atoms. By choosing the molecular species carefully --they experiment with SrF molecules-- and choosing the photon energies to avoid unwanted excitation of rotational motion, the cooling process can proceed. In this way, molecular temperatures of 300 micro-K have been achieved, the lowest ever for direct cooling of molecules. This temperature pertains so far to motion along one selected dimension only, much as for the initial demonstrations of laser cooling for atoms.

While these temperatures are less than a thousandth of a degree above absolute zero, they are for now orders of magnitude hotter than the cold molecules that can be made by first chilling individual atoms and then combining them. With the latter approach, however, the choice of molecules is presently limited to only those that can be made with alkali atoms. The SrF molecules used in the Yale experiment, by contrast, possess an unpaired electron. This makes them potentially useful as quantum bits or in various studies of fundamental physics. In addition, the results from DeMille's group indicate that laser cooling to yet lower temperatures is likely possible for SrF and other, similar molecules.

"The technique of laser cooling," says DeMille, "which has led to a revolution in atomic physics, has now been shown to also apply to (at least some) molecules. This significantly expands the range of molecules for which ultracold temperatures can be reached, which in turn opens a route to many new scientific applications."

The presentation, "Laser Cooling of a Diatomic Molecule," takes place on Oct. 28 at the Frontiers in Optics (FiO) 2010/Laser Science XXVI -- the 94th annual meeting of the Optical Society (OSA), which is being held together with the annual meeting of the American Physical Society (APS) Division of Laser Science at the Rochester Riverside Convention Center in Rochester, N.Y., from Oct. 24-28.


Story Source:

The above story is based on materials provided by Optical Society of America. Note: Materials may be edited for content and length.


Cite This Page:

Optical Society of America. "Direct laser cooling of molecules." ScienceDaily. ScienceDaily, 21 October 2010. <www.sciencedaily.com/releases/2010/10/101020195313.htm>.
Optical Society of America. (2010, October 21). Direct laser cooling of molecules. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2010/10/101020195313.htm
Optical Society of America. "Direct laser cooling of molecules." ScienceDaily. www.sciencedaily.com/releases/2010/10/101020195313.htm (accessed August 30, 2014).

Share This




More Matter & Energy News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins