Featured Research

from universities, journals, and other organizations

Direct laser cooling of molecules

Date:
October 21, 2010
Source:
Optical Society of America
Summary:
Cooling molecules with lasers is harder than cooling individual atoms with lasers. The very process of laser cooling, in which atoms are buffeted by thousands of photons, was thought by many to be impossible for molecules since photons, instead of slowing and cooling the molecules, could actually excite internal motions such as rotations and vibrations. Consequently, to get cold molecules one method is to first cool atoms and then combine them into molecules. Now physicists have developed a way to cool molecules directly with laser light using three lasers instead of the two typically needed for atoms.

Cooling molecules with lasers is harder than cooling individual atoms with lasers. The very process of laser cooling, in which atoms are buffeted by thousands of photons, was thought by many to be impossible for molecules since photons, instead of slowing and cooling the molecules, could actually excite internal motions such as rotations and vibrations. Consequently, to get cold molecules one method is to first cool atoms and then combine them into molecules.

Related Articles


Now Yale physicist David DeMille and his team have developed a way to cool molecules directly with laser light using three lasers instead of the two typically needed for atoms. By choosing the molecular species carefully --they experiment with SrF molecules-- and choosing the photon energies to avoid unwanted excitation of rotational motion, the cooling process can proceed. In this way, molecular temperatures of 300 micro-K have been achieved, the lowest ever for direct cooling of molecules. This temperature pertains so far to motion along one selected dimension only, much as for the initial demonstrations of laser cooling for atoms.

While these temperatures are less than a thousandth of a degree above absolute zero, they are for now orders of magnitude hotter than the cold molecules that can be made by first chilling individual atoms and then combining them. With the latter approach, however, the choice of molecules is presently limited to only those that can be made with alkali atoms. The SrF molecules used in the Yale experiment, by contrast, possess an unpaired electron. This makes them potentially useful as quantum bits or in various studies of fundamental physics. In addition, the results from DeMille's group indicate that laser cooling to yet lower temperatures is likely possible for SrF and other, similar molecules.

"The technique of laser cooling," says DeMille, "which has led to a revolution in atomic physics, has now been shown to also apply to (at least some) molecules. This significantly expands the range of molecules for which ultracold temperatures can be reached, which in turn opens a route to many new scientific applications."

The presentation, "Laser Cooling of a Diatomic Molecule," takes place on Oct. 28 at the Frontiers in Optics (FiO) 2010/Laser Science XXVI -- the 94th annual meeting of the Optical Society (OSA), which is being held together with the annual meeting of the American Physical Society (APS) Division of Laser Science at the Rochester Riverside Convention Center in Rochester, N.Y., from Oct. 24-28.


Story Source:

The above story is based on materials provided by Optical Society of America. Note: Materials may be edited for content and length.


Cite This Page:

Optical Society of America. "Direct laser cooling of molecules." ScienceDaily. ScienceDaily, 21 October 2010. <www.sciencedaily.com/releases/2010/10/101020195313.htm>.
Optical Society of America. (2010, October 21). Direct laser cooling of molecules. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2010/10/101020195313.htm
Optical Society of America. "Direct laser cooling of molecules." ScienceDaily. www.sciencedaily.com/releases/2010/10/101020195313.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com
Analysis: NTSB Wants Better Black Boxes

Analysis: NTSB Wants Better Black Boxes

AP (Jan. 22, 2015) NTSB investigators recommended Thursday that long-distance passenger planes carry improved technology to allow them to be found more easily in a crash, as well as include enhanced cockpit recording technology. (Jan. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins