Featured Research

from universities, journals, and other organizations

Malaria research begins to bite: Molecular switches pinpointed in control of malaria parasite's life cycle

Date:
October 25, 2010
Source:
University of Nottingham
Summary:
Scientists have pin-pointed the 72 molecular switches that control the three key stages in the life cycle of the malaria parasite and have discovered that over a third of these switches can be disrupted in some way. Their research is a significant breakthrough in the search for cheap and effective vaccines and drugs to stop the transmission of a disease which kills up to a million children a year. Until now little has been known about the cellular processes involved in the development of this deadly disease. The research involved the very first comprehensive functional analysis of protein kinases in any malaria parasite. It is also the largest gene knock-out study in Plasmodium berghei -- a malaria parasite infecting rodents.

Dr. Rita Tewari.
Credit: Image courtesy of University of Nottingham

Scientists at The University of Nottingham and the Wellcome Trust Sanger Institute near Cambridge have pin-pointed the 72 molecular switches that control the three key stages in the life cycle of the malaria parasite and have discovered that over a third of these switches can be disrupted in some way.

Their research which has been funded by Wellcome Trust and the Medical Research Council (MRC) is a significant breakthrough in the search for cheap and effective vaccines and drugs to stop the transmission of a disease which kills up to a million children a year.

Until now little has been known about the cellular processes involved in the development of this deadly disease. The research, published in the journal Cell Host & Microbe, involved the very first comprehensive functional analysis of protein kinases in any malaria parasite. It is also the largest gene knock-out study in Plasmodium berghei -- a malaria parasite infecting rodents.

Dr Rita Tewari, in the School of Biology at The University of Nottingham, led the research. Dr Tewari said: "Blocking parasite transmission is recognised as an important element in the global fight to control malaria. Kinases are a family of proteins which contribute to the control of nearly all cellular processes and have already become major drug targets in the fight against cancer and other diseases. Now we have identified some key regulators that control the transmission of the malaria parasite. Work to develop drugs to eradicate this terrible disease can now focus on the best targets. This study shows how systematic functional studies not only increase our knowledge in understanding complexity of malaria parasite development but also gives us the rational approach towards drug development."

The life cycle of the malaria parasite is complex. Once the mosquito has feasted off infected blood fertilisation takes place within the mosquito. The deadly parasites are then injected back into another host in large numbers when the mosquito bites again. Once inside its mammalian host the parasite first infects the liver where it replicates again. After 48 hours millions of parasites are released into the red bloods cells of its host where they attack in vast numbers overwhelming their host producing high fever and sickness.

Dr Oliver Billker, an expert in pathogen genetics at the Wellcome Trust Sanger Institute, said: "This is a major leap forward -- we can now set aside these 23 functionally redundant genes. This act of prioritisation alone has narrowed the set of targets for drug searches by a third. "Our study demonstrates how a large scale gene knockout study can guide drug development efforts towards the right targets. We must now develop the technology to ask across the genome which pathways are important for parasite development and transmission."

As the malaria parasite becomes increasingly resistant to existing drugs and vaccines the race to find ways of blocking the transmission of malaria is becoming increasingly important. Last month the journal PLoS ONE published Dr Tewari's research which identified a protein, PF16, which is critical in the development of the malaria parasite -- specifically the male sex cells (gametes) -- which are essential in the spread by mosquitoes of this lethal parasite. The study, led by The University of Nottingham, found a way of disabling the PF16 protein.

In future studies, Dr Tewari's group is concentrating on the role of other signalling molecules like phosphatases, kinases and armadillo repeat proteins and their interaction in understanding malaria parasite development. The aim is to identify the best drug or vaccine target along the way.


Story Source:

The above story is based on materials provided by University of Nottingham. Note: Materials may be edited for content and length.


Journal Reference:

  1. Rita Tewari, Ursula Straschil, Alex Bateman, Ulrike Bφhme, Inna Cherevach, Peng Gong, Arnab Pain, Oliver Billker. The Systematic Functional Analysis of Plasmodium Protein Kinases Identifies Essential Regulators of Mosquito Transmission. Cell Host & Microbe, 2010; 8 (4): 377 DOI: 10.1016/j.chom.2010.09.006

Cite This Page:

University of Nottingham. "Malaria research begins to bite: Molecular switches pinpointed in control of malaria parasite's life cycle." ScienceDaily. ScienceDaily, 25 October 2010. <www.sciencedaily.com/releases/2010/10/101021090151.htm>.
University of Nottingham. (2010, October 25). Malaria research begins to bite: Molecular switches pinpointed in control of malaria parasite's life cycle. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2010/10/101021090151.htm
University of Nottingham. "Malaria research begins to bite: Molecular switches pinpointed in control of malaria parasite's life cycle." ScienceDaily. www.sciencedaily.com/releases/2010/10/101021090151.htm (accessed April 17, 2014).

Share This



More Plants & Animals News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) — Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) — A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) — A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com
Raw: Three Rare White Tiger Cubs Debut at Zoo

Raw: Three Rare White Tiger Cubs Debut at Zoo

AP (Apr. 16, 2014) — The Buenos Aires Zoo debuted a trio of rare white Bengal tiger cubs on Wednesday. (April 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins