Featured Research

from universities, journals, and other organizations

UV light nearly doubles vacuum's effectiveness in reducing carpet microbes

Date:
November 2, 2010
Source:
Ohio State University
Summary:
New research suggests that the addition of ultraviolet light to the brushing and suction of a vacuum cleaner can almost double the removal of potentially infectious microorganisms from a carpet's surface when compared to vacuuming alone. Researchers say the findings suggest that incorporating the germicidal properties of UV light into vacuuming might have promise in reducing allergens and pathogens from carpets, as well.

New research suggests that the addition of ultraviolet light to the brushing and suction of a vacuum cleaner can almost double the removal of potentially infectious microorganisms from a carpet's surface when compared to vacuuming alone.

Researchers say the findings suggest that incorporating the germicidal properties of UV light into vacuuming might have promise in reducing allergens and pathogens from carpets, as well.

"What this tells us is there is a commercial vacuum with UV technology that's effective at reducing surface microbes. This has promise for public health, but we need more data," said Timothy Buckley, associate professor and chair of environmental health sciences at Ohio State University and senior author of the study.

"Carpets are notorious as a source for exposure to a lot of bad stuff, including chemicals, allergens and microbes. We need tools that are effective and practical to reduce the associated public health risk. This vacuum technology appears to be a step in the right direction."

The research appears online in the journal Environmental Science & Technology.

For this study, Buckley and colleagues tested a commercially available upright vacuum cleaner, evaluating separately and in combination the standard beater-bar, or rotating brush, as well as a lamp that emits germicidal radiation.

UV-C light with a wavelength of 253.7 nanometers has been studied extensively for its disinfection properties in water, air and food and on a variety of surfaces. This is the first study of its effects on carpet surfaces.

The Ohio State research group selected multiple 3-by-3-foot sections of carpeting of different types from three settings: a commercial tight-loop carpet in a university conference room, and medium Berber carpet with longer, dense loops in a common room of an apartment complex and a single-family home.

Researchers collected samples from each carpet section using contact plates that were pressed onto the flooring to lift microbes from the carpet surfaces. They collected samples from various locations on each test site to obtain a representative sample of the species present on the carpets.

After sampling, the plates were incubated for 24 hours in a lab and the number of colonies was counted. The plates contained growth media particularly suited for fungi commonly found in indoor environments, including Penicillium and Zygomycetes.

Each treatment was tested separately by collecting multiple samples from each 3-by-3-foot section before and after treatment: vacuuming alone, the application of UV-C light alone, or a combination of UV-C light and vacuuming. In each case, the carpets were vacuumed at a speed of 1.8 feet per second for two minutes.

Overall, vacuuming alone reduced microbes by 78 percent, UV-C light alone produced a 60 percent reduction in microbes, and the combination of beater-bar vacuuming and UV-C light reduced microbes on the carpet surfaces by 87 percent. When looking at the microbe quantities, the researchers found that, on average, vacuuming alone removed 7.3 colony-forming units of microbes per contact plate and the UV-C light removed 6.6 colony-forming units per plate. The combination of UV-C light and vacuuming yielded the largest reduction in colony-forming units: 13 per plate.

"We concluded that the combined UV-C-equipped vacuum produced approximately the sum of the individual effects, and therefore the UV-C was responsible for an approximate doubling of the vacuum cleaner's effectiveness in reducing the surface-bound microbial load," Buckley said.

Surfaces in residential settings, and especially carpets, are seen as potentially posing health risks because they are reservoirs for the accumulation of a variety of contaminants. Those most susceptible to infection, including the elderly, asthmatics, the very young and people with compromised immune systems, might be at particular risk because they spend most of their time indoors, Buckley noted.

"The best next step would be to test this UV-C vacuum technology in some environments that are high risk, where we could sample for specific pathogens," Buckley said. "The home environment would be particularly important, because that's where people spend the lion's share of their time and are likely to be in close contact with carpet."

Most natural UV-C rays from the sun are absorbed in the atmosphere, but long-term exposure to artificial UV-C sources can cause skin and eye damage. The vacuum has been engineered to prevent exposure to harmful radiation from the UV-C lamp, Buckley said.

Upright vacuum retail prices generally range from about $100 to $900. The equipment in this study falls within that range.

This work was supported through a contract with Halo Technologies Inc. of Des Plaines, Ill., which supplied the vacuum technology.

Co-authors of the study include Eric Lutz, Smita Sharma and Bruce Casto of the Division of Environmental Health Sciences and Glen Needham of the Department of Entomology, all at Ohio State.


Story Source:

The above story is based on materials provided by Ohio State University. The original article was written by Emily Caldwell. Note: Materials may be edited for content and length.


Journal Reference:

  1. Eric A. Lutz, Smita Sharma, Bruce Casto, Glen Needham, Timothy J. Buckley. Effectiveness of UV−C Equipped Vacuum at Reducing Culturable Surface-Bound Microorganisms on Carpets. Environmental Science & Technology, 2010; 101029093141077 DOI: 10.1021/es1015982

Cite This Page:

Ohio State University. "UV light nearly doubles vacuum's effectiveness in reducing carpet microbes." ScienceDaily. ScienceDaily, 2 November 2010. <www.sciencedaily.com/releases/2010/11/101101171242.htm>.
Ohio State University. (2010, November 2). UV light nearly doubles vacuum's effectiveness in reducing carpet microbes. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2010/11/101101171242.htm
Ohio State University. "UV light nearly doubles vacuum's effectiveness in reducing carpet microbes." ScienceDaily. www.sciencedaily.com/releases/2010/11/101101171242.htm (accessed August 1, 2014).

Share This




More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Cycle World (July 30, 2014) The Bonnier Motorcycle Group presents Smoked; a three part video series. In this episode the 2015 Ducati Diavel takes on the 2014 Chevy Corvette Stingray Video provided by Cycle World
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins