Featured Research

from universities, journals, and other organizations

Astronomers find evidence of 'cosmic climate change'

Date:
November 2, 2010
Source:
Royal Astronomical Society (RAS)
Summary:
A team of astronomers has found evidence that the universe may have gone through a warming trend early in its history. They measured the temperature of the gas that lies in between galaxies, and found a clear indication that it had increased steadily over the period from when the universe was one tenth to one quarter of its current age. This cosmic climate change is most likely caused by the huge amount of energy output from young, active galaxies during this epoch.

A graph showing the temperature of the all-pervasive intergalactic medium when the universe was between one and three billion years old, overlaid on an artist's impression of the emergence of galaxies over the same period. The shaded region shows the range of possible temperatures measured from the team's data. The warming occurred at a time when the growth of galaxies was in full swing.
Credit: Amanda Smith / IoA

A team of astronomers has found evidence that the universe may have gone through a warming trend early in its history. They measured the temperature of the gas that lies in between galaxies, and found a clear indication that it had increased steadily over the period from when the universe was one tenth to one quarter of its current age. This cosmic climate change is most likely caused by the huge amount of energy output from young, active galaxies during this epoch.

The researchers publish their results in a forthcoming paper in the journal Monthly Notices of the Royal Astronomical Society.

"Early in the history of the universe, the vast majority of matter was not in stars or galaxies," University of Cambridge astronomer George Becker explains. "Instead, it was spread out in a very thin gas that filled up all of space." The team, led by Becker, was able to measure the temperature of this gas using the light from distant objects called quasars. "The gas, which lies between us and the quasar, adds a series of imprints to the light from these extremely bright objects," Becker continues, "and by analyzing how those imprints partly block the background light from the quasars, we can infer many of the properties of the absorbing gas, such as where it is, what it's made of, and what its temperature is."

The quasar light the astronomers were studying was more than ten billion years old by the time it reached Earth, and had travelled through vast tracts of the universe. Each intergalactic gas cloud the light passed through during this journey left its own mark, and the accumulated effect can be used as a fossil record of temperature in the early universe. "Just as Earth's climate can be studied from ice cores and tree rings," says Becker, "the quasar light contains a record of the climate history of the cosmos.

'Of course, the temperatures we measured are a bit different from what you find on Earth," commented Becker. "One billion years after the Big Bang, the gas we measured was a 'cool' 8,000 degrees Celsius. By three and a half billion years the temperature had climbed to at least 12,000 degrees Celsius."

The warming trend is believed to run counter to normal cosmic climate patterns. Normally the universe is expected to cool down over time. As the cosmos expands, the gas should get colder, much like gas escaping from an aerosol can. To create the observed rise in temperature, something substantial must have been heating the gas.

"The likely culprits in this intergalactic warming are the quasars themselves," explains fellow team member Martin Haehnelt, who is also at Cambridge University's newly-established Kavli Institute for Cosmology. "Over the period of cosmic history studied by the team, quasars were becoming much more common. These objects, which are thought to be giant black holes swallowing up material in the centres of galaxies, emit huge amounts of energetic ultraviolet light. These UV rays would have interacted with the intergalactic gas, creating the rise in temperature we observed."

One of the lightest and most abundant elements in these intergalactic clouds, helium, played a vital role in the heating process. Ultraviolet light stripped the electrons from a helium atom, freeing the electrons to collide with other atoms and heat up the gas. Once the supply of fresh helium was exhausted, the universe started to cool down again. Astronomers believe this probably occurred after the cosmos was one quarter of its present age.

The team's discovery was made possible by data taken with the 10-meter Keck telescopes in Hawaii, aided by advanced simulations run on a supercomputer at the University of Cambridge. Along with Becker and Haehnelt, the team included James Bolton at the University of Melbourne, and Wallace Sargent at the California Institute of Technology.


Story Source:

The above story is based on materials provided by Royal Astronomical Society (RAS). Note: Materials may be edited for content and length.


Journal Reference:

  1. Becker G. D., Bolton J. S., Haehnelt G. M., Sargent W. L. W. Detection of Extended He II Reionization in the Temperature Evolution of the Intergalactic Medium. Monthly Notices of the Royal Astronomical Society, 2010; (accepted) [link]

Cite This Page:

Royal Astronomical Society (RAS). "Astronomers find evidence of 'cosmic climate change'." ScienceDaily. ScienceDaily, 2 November 2010. <www.sciencedaily.com/releases/2010/11/101102083644.htm>.
Royal Astronomical Society (RAS). (2010, November 2). Astronomers find evidence of 'cosmic climate change'. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2010/11/101102083644.htm
Royal Astronomical Society (RAS). "Astronomers find evidence of 'cosmic climate change'." ScienceDaily. www.sciencedaily.com/releases/2010/11/101102083644.htm (accessed October 23, 2014).

Share This



More Space & Time News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Reuters - US Online Video (Oct. 22, 2014) — Russian cosmonauts Maxim Suraev and Alexander Samokutyaev step outside the International Space Station to perform work on the exterior of the station's Russian module. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) — A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com
Latin America Launches Communications Satellite

Latin America Launches Communications Satellite

AFP (Oct. 17, 2014) — Argentina launches a home-built satellite, a first for Latin America. It will ride a French-made Ariane 5 rocket into orbit, and will provide cell phone, digital TV, Internet and data services to the lower half of South America. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
This Week @ NASA, October 17, 2014

This Week @ NASA, October 17, 2014

NASA (Oct. 17, 2014) — Power spacewalk, MAVEN’s “First Light”, Hubble finds extremely distant galaxy and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins