Featured Research

from universities, journals, and other organizations

How key drug kills worms in tropical diseases

Date:
November 12, 2010
Source:
Michigan State University
Summary:
Scientists have unlocked how a key anti-parasitic drug kills the worms brought on by the filarial diseases river blindness and elephantitis. Understanding how the drug ivermectin works has the potential to lead to new treatments for the diseases, in which the body is infected with parasitic worms.

Charles Mackenzie, a professor of veterinary pathology, works with elephantiasis patients in Tanzania.
Credit: Image courtesy of Michigan State University

In a major breakthrough that comes after decades of research and nearly half a billion treatments in humans, scientists have finally unlocked how a key anti-parasitic drug kills the worms brought on by the filarial diseases river blindness and elephantitis.

Understanding how the drug ivermectin works has the potential to lead to new treatments for the diseases, in which the body is infected with parasitic worms, said Charles Mackenzie, a professor of veterinary pathology in the College of Veterinary Medicine and researcher on the project. The diseases afflict about 140 million people worldwide, doing much of their damage in equatorial Africa.

"Ivermectin is one of the most important veterinary and human anti-parasitic agents ever," Mackenzie said. "Knowing specifically how it interacts with the body's own immune system and kills parasitic worms opens up whole new treatment avenues."

The research appears in the current edition of the Proceedings of the National Academy of Sciences.

Elephantiasis (lymphatic filariasis) is caused by tiny worms spread via mosquitoes and results in severe swelling of the legs, arms and torso. River blindness (onchocerciasis) is spread by black flies, and after the worms die in a person's eye, they can cause blindness and debilitating skin disease.

Ivermectin works by killing the first stage of the worm in the human body, and also appears to paralyze the reproductive tract of the adult female worms, stopping reproduction of new parasites.

What the researchers discovered is that the drug does this by preventing the worm from secreting proteins through a pore in its mid-body; ivermectin binds to receptors at the pore and blocks the secretions. It is the secretions that normally block a person's ability to attack and kill the worm; after the drug prevents them, the host's own immune system is able to attack and kill the parasites.

"Understanding how the worms were avoiding the host's immune responses will greatly enhance our ability to manipulate the immune system to the advantage of the host, and perhaps develop vaccines," Mackenzie said. "Also, one of the most important challenges in the overall effort against filarial infections relates to the development of resistance and the loss of efficacy of the drugs we use; this new knowledge provides an important key to understanding and perhaps preventing resistance."

Ivermectin was developed by pharmaceutical firm Merck & Co. in the 1970s. It was donated in 1987 for use to treat river blindness, as existing drugs were in fact inducing blindness. Ivermectin was able to be used safely in mass drug administration programs in many developing countries, shifting the paradigm for how public health programs delivered medicines in rural areas. The drug then was used in other parasitic disease programs, such as the one for elephantiasis, treating more than 100 million people for that disease.

Mackenzie has worked for more than 20 years on tropical filarial diseases, much of that time partnering with Tim Geary at McGill University in Montreal. Geary's lab was critical in the ivermectin findings, as was McGill graduate student Yovany Moreno. Geary and Mackenzie also recently were awarded $2 million from the Gates Foundation to study another anti-filarial drug, flubendazole.


Story Source:

The above story is based on materials provided by Michigan State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yovany Moreno, Joseph F. Nabhan, Jonathan Solomon, Charles D. Mackenzie, Timothy G. Geary. Ivermectin disrupts the function of the excretory-secretory apparatus in microfilariae of Brugia malayi. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.1011983107

Cite This Page:

Michigan State University. "How key drug kills worms in tropical diseases." ScienceDaily. ScienceDaily, 12 November 2010. <www.sciencedaily.com/releases/2010/11/101110113036.htm>.
Michigan State University. (2010, November 12). How key drug kills worms in tropical diseases. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2010/11/101110113036.htm
Michigan State University. "How key drug kills worms in tropical diseases." ScienceDaily. www.sciencedaily.com/releases/2010/11/101110113036.htm (accessed April 21, 2014).

Share This



More Plants & Animals News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Newsy (Apr. 20, 2014) A 9-year-old Michigan boy was exploring a creek when he came across a 10,000-year-old tooth from a prehistoric mastodon. Video provided by Newsy
Powered by NewsLook.com
Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins