Featured Research

from universities, journals, and other organizations

New research changes understanding of C4 plant evolution

Date:
February 15, 2011
Source:
University of Maryland Center for Environmental Science
Summary:
A new analysis of fossilized grass-pollen grains deposited on ancient European lake and sea bottoms 16-35 million years ago reveals that C4 grasses evolved earlier than previously thought. This new evidence casts doubt on the widely held belief that the rise of this incredibly productive group of plants was driven by a large drop in atmospheric carbon dioxide concentrations during the Oligocene epoch.

Dr. David Nelson prepares a sample for stable isotope analysis.
Credit: Image courtesy of University of Maryland Center for Environmental Science

A new analysis of fossilized grass-pollen grains deposited on ancient European lake and sea bottoms 16-35 million years ago reveals that C4 grasses evolved earlier than previously thought. This new evidence casts doubt on the widely-held belief that the rise of this incredibly productive group of plants was driven by a large drop in atmospheric carbon dioxide concentrations during the Oligocene epoch.

Related Articles


The research team, led by University of Maryland Center for Environmental Science Appalachian Laboratory researcher Dr. David Nelson and University of Illinois Professor Feng Sheng Hu, examined the carbon isotope signatures of hundreds of grass-pollen grains and found that C4 grasses were already present on the landscape during the early part of the Oligocene, some 14 million years earlier than previously thought from geological evidence. Their findings are now published online in the journal Geology and will shortly appear in the print edition.

"The idea that C4 grasses originated prior to global decreases in carbon dioxide levels requires us to reevaluate the way we think about the evolution of C4 photosynthesis," said Dr. Nelson. "This new information should encourage the examination of alternate evolutionary selection pressures, such as warm temperatures or dry climates."

C4 plants compose only 3 percent of flowering plant species, yet account for about 25 percent global terrestrial productivity. About 60% of C4 species are grasses, and they dominate the world's grassland and savanna biomes, particularly those in warmer, lower latitude areas. Their ecological success results from the way these species concentrate and then fix carbon dioxide in order to power photosynthesis. While the most well known C4 plants are maize and sugar cane, both of which are critical to human consumption, there is a growing interest in their use as biofuels in order to capture carbon from the atmosphere to mitigate increasing global carbon dioxide levels.

The team used an innovative technique pioneered by Dr. Nelson earlier in his career -- the Single Pollen Isotope Ratio Analysis or SPIRAL -- to analyze the samples. The scientists first extracted grains of grass pollen from sedimentary rocks using a micromanipulator; then analyzed the tiny samples using a microcombustion device interfaced with an isotope ratio mass spectrometer in Ann Pearson's laboratory at Harvard University, which houses one of only a handful of these devices in the world. Through this analysis, they were able to detect the signature of C4 species from their more common C3 counterparts, because C4 and C3 plants take up different ratios of carbon isotopes during photosynthesis.

"SPIRAL enables us to detect C4 grasses at much lower abundances in geological records than previous approaches, which is helping to revolutionize our ability to study their ecology and evolution," said Dr. Hu. University of Illinois graduate student Michael Urban, lead author of the paper, continues to analyze samples from other parts of the world to look at variation in C4-grass abundance in relation to past changes in atmospheric CO2 and climate.

This research was supported by University of Illinois Research Board, National Science Foundation and the David and Lucille Packard Foundation Fellowships Program.


Story Source:

The above story is based on materials provided by University of Maryland Center for Environmental Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Michael A. Urban, David M. Nelson, Gonzalo Jimιnez-Moreno, Jean-Jaques Chβteauneuf, Ann Pearson, and Feng Sheng Hu. Isotopic evidence of C4 grasses in southwestern Europe during the Early Oligocene-Middle Miocene. Geology, November 12, 2010 DOI: 10.1130/G31117.1

Cite This Page:

University of Maryland Center for Environmental Science. "New research changes understanding of C4 plant evolution." ScienceDaily. ScienceDaily, 15 February 2011. <www.sciencedaily.com/releases/2010/11/101115142007.htm>.
University of Maryland Center for Environmental Science. (2011, February 15). New research changes understanding of C4 plant evolution. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2010/11/101115142007.htm
University of Maryland Center for Environmental Science. "New research changes understanding of C4 plant evolution." ScienceDaily. www.sciencedaily.com/releases/2010/11/101115142007.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) — Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) — Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) — One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) — Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins