Featured Research

from universities, journals, and other organizations

'Logic gates' made to program bacteria as computers

Date:
December 8, 2010
Source:
University of California - San Francisco
Summary:
Researchers have engineered E. coli with the key molecular circuitry that will enable genetic engineers to program cells to communicate and perform computations.

Escherichia coli bacteria.
Credit: Janice Haney Carr, CDC

A team of UCSF researchers has engineered E. coli with the key molecular circuitry that will enable genetic engineers to program cells to communicate and perform computations.

Related Articles


The work builds into cells the same logic gates found in electronic computers and creates a method to create circuits by "rewiring" communications between cells. This system can be harnessed to turn cells into miniature computers, according to findings reported in the journal Nature.

That, in turn, will enable cells to be programmed with more intricate functions for a variety of purposes, including agriculture and the production of pharmaceuticals, materials and industrial chemicals, according to Christopher A. Voigt, PhD, a synthetic biologist and associate professor in the UCSF School of Pharmacy's Department of Pharmaceutical Chemistry who is senior author of the paper.

The most common electronic computers are digital, he explained; that is, they apply logic operations to streams of 1's and 0's to produce more complex functions, ultimately producing the software with which most people are familiar. These logic operations are the basis for cellular computation, as well.

"We think of electronic currents as doing computation, but any substrate can act like a computer, including gears, pipes of water, and cells," Voigt said. "Here, we've taken a colony of bacteria that are receiving two chemical signals from their neighbors, and have created the same logic gates that form the basis of silicon computing."

Applying this to biology will enable researchers to move beyond trying to understand how the myriad parts of cells work at the molecular level, to actually use those cells to perform targeted functions, according to Mary Anne Koda-Kimble, dean of the UCSF School of Pharmacy.

"This field will be transformative in how we harness biology for biomedical advances," said Koda-Kimble, who championed Voigt's recruitment to lead this field at UCSF in 2003. "It's an amazing and exciting relationship to watch cellular systems and synthetic biology unfold before our eyes."

The Nature paper describes how the Voigt team built simple logic gates out of genes and inserted them into separate E. coli strains. The gate controls the release and sensing of a chemical signal, which allows the gates to be connected among bacteria much the way electrical gates would be on a circuit board.

"The purpose of programming cells is not to have them overtake electronic computers," explained Voigt, whom Scientist magazine named a "scientist to watch" in 2007 and whose work is included among the Scientist's Top 10 Innovations of 2009. "Rather, it is to be able to access all of the things that biology can do in a reliable, programmable way."

The research already has formed the basis of an industry partnership with Life Technologies, in Carlsbad, Cal., in which the genetic circuits and design algorithms developed at UCSF will be integrated into a professional software package as a tool for genetic engineers, much as computer-aided design is used in architecture and the development of advanced computer chips.

The automation of these complex operations and design choices will advance basic and applied research in synthetic biology. In the future, Voigt said the goal is to be able to program cells using a formal language that is similar to the programming languages currently used to write computer code.

The lead author of the paper is Alvin Tamsir, a student in the Biochemistry & Molecular Biology, Cell Biology, Developmental Biology, and Genetics (Tetrad) Graduate Program at UCSF. Jeffrey J. Tabor, PhD, in the UCSF School of Pharmacy, is a co-author.


Story Source:

The above story is based on materials provided by University of California - San Francisco. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alvin Tamsir, Jeffrey J. Tabor, Christopher A. Voigt. Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature, 2010; DOI: 10.1038/nature09565

Cite This Page:

University of California - San Francisco. "'Logic gates' made to program bacteria as computers." ScienceDaily. ScienceDaily, 8 December 2010. <www.sciencedaily.com/releases/2010/12/101208142301.htm>.
University of California - San Francisco. (2010, December 8). 'Logic gates' made to program bacteria as computers. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2010/12/101208142301.htm
University of California - San Francisco. "'Logic gates' made to program bacteria as computers." ScienceDaily. www.sciencedaily.com/releases/2010/12/101208142301.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins