Featured Research

from universities, journals, and other organizations

Alzheimer's: Tau disrupts neural communication prior to neurodegeneration

Date:
December 24, 2010
Source:
Cell Press
Summary:
A new study is unraveling the earliest events associated with neurodegenerative diseases characterized by abnormal accumulation of tau protein. The research reveals how tau disrupts neuronal communication at synapses and may help to guide development of therapeutic strategies that precede irreversible neuronal degeneration.

A new study is unraveling the earliest events associated with neurodegenerative diseases characterized by abnormal accumulation of tau protein. The research, published in the December 22 issue of the journal Neuron, reveals how tau disrupts neuronal communication at synapses and may help to guide development of therapeutic strategies that precede irreversible neuronal degeneration.

Tau normally contributes to the supportive framework of proteins in the cell. It is well established that abnormal tau sometimes clumps into neuron-damaging filamentous deposits and that aggregates of tau with multiple phosphate groups attached are a defining feature of neurodegenerative disorders called "tauopathies," which include Alzheimer's disease and other dementias.

"Research has shown that healthy neurons have more tau in the axon and less in the cell body and dendrites, and that this gradient is reversed in neurodegenerative disorders like Alzheimer's," explains study author, Dr. Karen H. Ashe from the University of Minnesota. "Although studies have shown that accumulation of tau in dendrites induced neurodegeneration, they do not address how tau diminished brain function at preclinical disease stages preceding neurodegeneration."

Dr. Ashe, co-author Dr. Dezhi Liao, and their colleagues investigated how tau induces early memory deficits and disrupts neuronal communication, prior to obvious neuron damage. The researchers found that early accumulation of hyperphosphorylated tau in dendrites and dendritic spines disrupted communication coming in from other neurons. Dendritic spines are sites where there is a synapse between two neurons. The phosphorylation state of tau played a critical role in mediating tau mislocalization and subsequent impairment of synaptic communication.

"These findings capture what is likely the earliest synaptic dysfunction that precedes synapse loss in tauopathies and provide an important mechanistic link between tau phosphorylation and the mislocalization of tau to dendritic spines," concludes Dr. Liao. "Understanding the key interactions that occur prior to neuronal loss will become increasingly important as preventative strategies shift the timing of interventions to pre-degenerative phases of disease," adds Dr. Ashe. "The aberrant mislocalization of tau proteins in dendritic spines might be a novel target in these strategies."


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Brian R. Hoover, Miranda N. Reed, Jianjun Su, Rachel D. Penrod, Linda A. Kotilinek, Marianne K. Grant, Rose Pitstick, George A. Carlson, Lorene M. Lanier, Li-Lian Yuan, Karen H. Ashe, Dezhi Liao. Tau Mislocalization to Dendritic Spines Mediates Synaptic Dysfunction Independently of Neurodegeneration. Neuron, Volume 68, Issue 6, 1067-1081, 22 December 2010 DOI: 10.1016/j.neuron.2010.11.030

Cite This Page:

Cell Press. "Alzheimer's: Tau disrupts neural communication prior to neurodegeneration." ScienceDaily. ScienceDaily, 24 December 2010. <www.sciencedaily.com/releases/2010/12/101222121500.htm>.
Cell Press. (2010, December 24). Alzheimer's: Tau disrupts neural communication prior to neurodegeneration. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2010/12/101222121500.htm
Cell Press. "Alzheimer's: Tau disrupts neural communication prior to neurodegeneration." ScienceDaily. www.sciencedaily.com/releases/2010/12/101222121500.htm (accessed October 20, 2014).

Share This



More Mind & Brain News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Your Birth Season Might Determine Your Temperament

Your Birth Season Might Determine Your Temperament

Newsy (Oct. 20, 2014) A new study says the season you're born in can determine your temperament — and one season has a surprising outcome. Video provided by Newsy
Powered by NewsLook.com
Court Ruling Means Kids' Online Activity Could Be On Parents

Court Ruling Means Kids' Online Activity Could Be On Parents

Newsy (Oct. 17, 2014) In a ruling attorneys for both sides agreed was a first of its kind, a Georgia appeals court said parents can be held liable for what kids put online. Video provided by Newsy
Powered by NewsLook.com
The Best Foods To Boost Your Mood

The Best Foods To Boost Your Mood

Buzz60 (Oct. 17, 2014) Feeling down? Reach for the refrigerator, not the medicine cabinet! TC Newman (@PurpleTCNewman) shares some of the best foods to boost your mood. Video provided by Buzz60
Powered by NewsLook.com
You Can Get Addicted To Google Glass, Apparently

You Can Get Addicted To Google Glass, Apparently

Newsy (Oct. 15, 2014) Researchers claim they’ve diagnosed the first example of the disorder in a 31-year-old U.S. Navy serviceman. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins