Featured Research

from universities, journals, and other organizations

Researchers developing bio-based polymers that heal cracks

Date:
January 10, 2011
Source:
Iowa State University
Summary:
Researchers are developing biorenewable polymers capable of healing themselves as they degrade and crack. The self-healing properties can increase material lifetimes and reduce maintenance. There are challenges, but researchers think there's potential to develop new and effective materials.

Michael Kessler, left, and former Iowa State doctoral student Will Goertzen use a dynamic mechanical analyzer to measure the mechanical properties of polymers.
Credit: Image courtesy of Iowa State University

Michael Kessler has worked with polymers that repair themselves when they crack. And he's worked with polymers made from vegetable oils. Now he's working to combine the two technologies.

Kessler, an Iowa State University associate professor of materials science and engineering and an associate of the U.S. Department of Energy's Ames Laboratory, is researching and developing biorenewable polymers capable of healing themselves as they degrade and crack.

"If successful, the results of this research will provide biorenewable alternatives to petroleum-based resins," says a summary of Kessler's research project. Successfully developing the concept "should have a huge impact economically and environmentally."

Kessler's research project is supported by a five-year, $400,000 grant from the National Science Foundation's Faculty Early Career Development Program.

Kessler started working with self-healing materials as a doctoral student at the University of Illinois at Urbana-Champaign. He was part of a research team that in February 2001 published an article in the journal Nature that helped launch the field.

The technology has evolved into a system that embeds catalysts and microcapsules containing a liquid healing agent within a composite. As cracks develop in the composite, they rupture the microcapsules and release the healing agent. The healing agent contacts the catalyst and reacts by forming 3-D polymer chains that fill the cracks. That increases material lifetimes and reduces maintenance.

Visit his office, and Kessler will pull out a little container half filled with what looks like fine yellow powder. Those are the hollow microcapsules that make the self-healing process work, he said. (They're also the same technology behind scratch-and-sniff perfume ads.)

When Kessler joined Iowa State and the Ames Laboratory in 2005, he started working with Richard Larock, a Distinguished Professor of Chemistry and associate of the Ames Laboratory, to develop biorenewable polymers from vegetable oils.

Larock has invented and patented a process for producing various bioplastics from inexpensive natural oils, which make up 40 percent to 80 percent of the plastics. Larock has said the plastics have excellent thermal and mechanical properties and are very good at dampening noises and vibrations. They're also very good at returning to their original shapes when they're heated.

But can they be developed into a self-healing material?

Early results show there's laboratory work to do. Kessler's research has found that a healing agent for a polymer based on tung oil works too fast. Kessler and Peter Hondred, an Iowa State graduate student in materials science and engineering, are working to slow the agent for better healing.

The researchers are also working to develop encapsulating techniques that work with biorenewable polymers. And they're working to develop bio-based healing agents.

Despite the challenges, Kessler thinks there is potential to develop self-healing, biorenewable materials. He said the big question is whether researchers can push the healing efficiency of biorenewable polymers close to the 90 percent of standard composites.


Story Source:

The above story is based on materials provided by Iowa State University. Note: Materials may be edited for content and length.


Cite This Page:

Iowa State University. "Researchers developing bio-based polymers that heal cracks." ScienceDaily. ScienceDaily, 10 January 2011. <www.sciencedaily.com/releases/2011/01/110106145301.htm>.
Iowa State University. (2011, January 10). Researchers developing bio-based polymers that heal cracks. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/01/110106145301.htm
Iowa State University. "Researchers developing bio-based polymers that heal cracks." ScienceDaily. www.sciencedaily.com/releases/2011/01/110106145301.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins