Featured Research

from universities, journals, and other organizations

How protein made by human papillomavirus teams up on and thwarts protective human protein

Date:
January 11, 2011
Source:
American Society for Biochemistry and Molecular Biology
Summary:
Researchers have uncovered new information about human papillomavirus that one day may aid in the development of drugs to eliminate the cervical-cancer-causing infection.

An international team of researchers is reporting that it has uncovered new information about human papillomavirus that one day may aid in the development of drugs to eliminate the cervical-cancer-causing infection.

Led by researcher Per Jemth of Uppsala University in Sweden, the collaborators from four institutions detail in the Journal of Biological Chemistry how an offensive protein generated by the sexually transmitted virus handicaps a defensive protein made by the human body.

Co-author Neil Ferguson, a biophysicist at University College Dublin, says: "It has proved difficult to stem the proliferation of many viruses using conventional drug discovery. Inhibitors of protein-protein interactions, as in HPV's case, are potentially potent ways to perturb viral infections."

There are almost 200 strains of HPV, dozens of which are transmitted through genital contact, and about half of sexually active people have had one or more infections.

The immune system eliminates the virus within two years in about 90 percent of cases, according to the Centers for Disease Control and Prevention in Atlanta, but it lingers for many years in a minority of cases. Some strains result in no visible symptoms, others cause genital warts and still others cause cancer.

"Infection by high-risk human papillomaviruses is causing as many as half a million cases of cervical cancer and more than 200,000 deaths among women per year, making it one of the most common forms of cancer," Jemth emphasized.

For the virus to replicate, it has to interfere with the body's natural inclination to kill infected cells.

What is known as "programmed cell death," or the destruction of sick cells, ordinarily is carried out by several human proteins. However, when HPV is present, the virus sends out two of its own assassin proteins, known as E6 and E7, to stop the defensive human proteins in their tracks.

"Why is the virus causing cancer? In rare cases, the HPV infection is not cleared by the immune system and persists for decades. The virus' release of E6 and E7 proteins then increases the risk of deterioration to cancer by causing cell proliferation and preventing programmed cell death," explains Jemth. "If the cell dies, the virus will die along with it. So, the virus sends out these gunmen to assassinate proteins made by the body -- a hostile takeover, if you like."

In its study, Jemth's team offers a detailed look at how one human protein in particular, SAP97, is targeted by HPV assassin E6.

"To develop antivirals that prevent protein-protein interactions, in this case those of E6 and human proteins, it is necessary to first understand the biomolecular interactions required for virus viability and, where relevant, exploit these insights," says Ferguson.

So, the team used different techniques to visualize the attack -- or, rather, how HPV's E6 and man's SAP97 bind to each other.

"We studied how fast E6 is latching onto SAP97, how fast it is coming off, how strongly it holds onto SAP97, and what happens to the shape of SAP97 as E6 is attached to it," says Celestine Chi, the first author of the paper.

It turns out that there are three places on SAP97 where HPV's E6 can latch on, he says, which bogs down the human protein so that it cannot carry out its normal function.

In fact, the team reports, three E6 molecules can attach to one SAP97 molecule simultaneously -- essentially teaming up on the protein.

There currently are two vaccines that prevent HPV infection on the market, Cervarix and Gardasil, but they do nothing for those people who already are infected.

"Fundamental research on HPV is, therefore, still necessary to discover new routes to cure infection," Jemth says, which is why the team intends to continue its investigation and now has its crosshairs on HPV's E7 protein.

Ferguson adds: "The team's work represents an important step forward in understanding HPV biology and has important implications for therapeutic strategies. What was nice about this collaboration is that multiple laboratories worked synergistically such that the scope of the research and strength of the conclusions were significantly increased."

The team's research, funded by the Swedish Research Council and Science Foundation Ireland, was a collaboration of four universities -- Uppsala University and Linkφping University in Sweden, University College Dublin in Ireland and University of Copenhagen in Denmark. The resulting "Paper of the Week" was published on the Journal of Biological Chemistry's website Nov. 27 and will appear in the Feb. 4 print issue.


Story Source:

The above story is based on materials provided by American Society for Biochemistry and Molecular Biology. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. N. Chi, A. Bach, A. Engstrom, K. Stromgaard, P. Lundstrom, N. Ferguson, P. Jemth. Biophysical characterization of the complex between human papillomavirus E6 protein and synapse associated protein 97. Journal of Biological Chemistry, 2010; DOI: 10.1074/jbc.M110.190264

Cite This Page:

American Society for Biochemistry and Molecular Biology. "How protein made by human papillomavirus teams up on and thwarts protective human protein." ScienceDaily. ScienceDaily, 11 January 2011. <www.sciencedaily.com/releases/2011/01/110111133021.htm>.
American Society for Biochemistry and Molecular Biology. (2011, January 11). How protein made by human papillomavirus teams up on and thwarts protective human protein. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2011/01/110111133021.htm
American Society for Biochemistry and Molecular Biology. "How protein made by human papillomavirus teams up on and thwarts protective human protein." ScienceDaily. www.sciencedaily.com/releases/2011/01/110111133021.htm (accessed July 30, 2014).

Share This




More Health & Medicine News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) — Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) — Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) — At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Generics Eat Into Pfizer's Sales

Generics Eat Into Pfizer's Sales

Reuters - Business Video Online (July 29, 2014) — Pfizer, the world's largest drug maker, cut full-year revenue forecasts because generics could cut into sales of its anti-arthritis drug, Celebrex. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins