Featured Research

from universities, journals, and other organizations

Overexpression of repetitive DNA sequences discovered in common tumor cells

January 13, 2011
Massachusetts General Hospital
Researchers have discovered massive overexpression of satellite repeats -- certain DNA sequences that do not code for proteins -- in some common tumor cells, findings that may improve knowledge of tumor development and lead to a novel cancer biomarker.

Massachusetts General Hospital (MGH) Cancer Center researchers have discovered a previously unknown feature of common tumor cells -- massive overexpression of certain DNA sequences that do not code for proteins. These DNA sequences -- called satellite repeats -- have been studied for their role in chromosomal structure but previously were not suspected of having a role in cancer. The report will appear in the journal Science and is receiving early online release.

Related Articles

"Satellite repeats make up a large part of our genome but had been thought to be inactive," explains David Ting, MD, of the MGH Cancer Center, co-lead author of the Science paper. "We found that these regions are, in fact, very active in cancer but not in normal tissue. The findings may give us a novel cancer biomarker, as well as new insights into how cancers behave."

Because previously available tools for analyzing the transcription of DNA into RNA were designed to focus on sequences that are eventually translated into proteins, they excluded segments present in multiple-repeat copies that do not produce proteins. Among these stretches of DNA are satellite repeats, repetitive sequences often found near the centers or the tips of chromosomes. Significant expression of satellite repeats had been seen previously only in embryonic tissues or embryonic stem cells.

The current study was designed to give a more comprehensive picture of the transcriptome -- the full range of RNA molecules -- of primary tumors. Using an advanced digital gene expression analysis system called single molecule next-generation sequencing, the MGH team first studied samples from a mouse model of pancreatic cancer and were surprised to find that satellite DNA was expressed at levels more than 100 times what would be expected in normal tissues. Greatly increased satellite expression was also found in mouse colon and lung tumors, and all the tested samples were epithelial cancers, the most common type of solid tumor.

Analysis of human tumor samples produced similar results, with powerful overexpression of two satellites called HSATII and ALR in the majority of cancers studied, including tumors of the pancreas, lung, prostate. Ting notes that finding increased satellite expression in lower-grade tumors suggested that overexpression begins early in tumor development, which has implications for early detection.

"Cancer diagnoses are increasingly being made on the basis of fine-needle biopsies, which yield small numbers of cells that must be correctly identified as malignant," he explains. "In a few of the analyzed samples, our team demonstrated that pancreatic cancer cells were correctly identified based on satellite RNA expression, which was appreciably higher than in nonmalignant cells. If confirmed in large prospective clinical trials, satellite RNA expression may provide a new and highly specific biomarker relevant to multiple types of epithelial cancers."

Daniel Haber, MD, PhD, director of the MGH Cancer Center and senior author of the Science paper, says, "What is most remarkable is how such a dramatic abnormality was only revealed because of new powerful sequencing technologies that allow us to study a type of RNA that was previously discarded. Our hope is that this abnormality will serve as an important biomarker in cancer diagnosis and that it will also shed light on common mechanisms by which cancer develops."

Haber is the Kurt J. Isselbacher/Peter D. Schwartz Professor of Oncology and Ting is an instructor in Medicine at Harvard Medical School. The co-lead author of the Science paper is Doron Lipson, PhD, of Helicos BioSciences Corporation, which manufactures the gene expression analysis technology used in this study. Additional co-authors are Suchismita Paul, Brian Brannigan, Sara Akhavanfard, MD, Erik J. Coffman, Gianmarco Contino, MD, Vikram Deshpande, MD, John Iafrate, MD, PhD, Miguel Rivera, MD, Nabeel Bardeesy, PhD, and Shyamala Maheswaran, PhD, MGH Cancer Center; and Stan Letovsky, PhD, Helicos BioSciences. The study was supported by grants from the Pancreatic Action Network/American Association for Cancer Research; the Warshaw Institute for Pancreatic Cancer Research at MGH, Fondacion Veronesi and the Howard Hughes Medical Institute.

Story Source:

The above story is based on materials provided by Massachusetts General Hospital. Note: Materials may be edited for content and length.

Journal Reference:

  1. David T. Ting, Doron Lipson, Suchismita Paul, Brian W. Brannigan, Sara Akhavanfard, Erik J. Coffman, Gianmarco Contino, Vikram Deshpande, A. John Iafrate, Stan Letovsky, Miguel N. Rivera, Nabeel Bardeesy, Shyamala Maheswaran, and Daniel A. Haber. Aberrant Overexpression of Satellite Repeats in Pancreatic and Other Epithelial Cancers. Science, 2011; DOI: 10.1126/science.1200801

Cite This Page:

Massachusetts General Hospital. "Overexpression of repetitive DNA sequences discovered in common tumor cells." ScienceDaily. ScienceDaily, 13 January 2011. <www.sciencedaily.com/releases/2011/01/110113141603.htm>.
Massachusetts General Hospital. (2011, January 13). Overexpression of repetitive DNA sequences discovered in common tumor cells. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2011/01/110113141603.htm
Massachusetts General Hospital. "Overexpression of repetitive DNA sequences discovered in common tumor cells." ScienceDaily. www.sciencedaily.com/releases/2011/01/110113141603.htm (accessed January 25, 2015).

Share This

More From ScienceDaily

More Health & Medicine News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Disneyland Measles Outbreak Spreads To 5 States

Disneyland Measles Outbreak Spreads To 5 States

Newsy (Jan. 24, 2015) Much of the Disneyland measles outbreak is being blamed on the anti-vaccination movement. The CDC encourages just about everyone get immunized. Video provided by Newsy
Powered by NewsLook.com
Growing Measles Outbreak Worries Calif. Parents

Growing Measles Outbreak Worries Calif. Parents

AP (Jan. 23, 2015) Public health officials are rushing to contain a measles outbreak that has sickened 70 people across 6 states and Mexico. The AP&apos;s Raquel Maria Dillon has more. (Jan. 23) Video provided by AP
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
This Is What It's Like To Date A Med Student

This Is What It's Like To Date A Med Student

BuzzFeed (Jan. 23, 2015) Dating is now speed-dating... or studying. Video provided by BuzzFeed
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

Strange & Offbeat Stories

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins