Featured Research

from universities, journals, and other organizations

Earth's hot past could be prologue to future climate

Date:
January 14, 2011
Source:
National Center for Atmospheric Research/University Corporation for Atmospheric Research
Summary:
The magnitude of climate change during Earth's deep past suggests that future temperatures may eventually rise far more than projected if society continues its pace of emitting greenhouse gases, a new analysis concludes. Building on recent research, the study examines the relationship between global temperatures and high levels of carbon dioxide in the atmosphere tens of millions of years ago.

A pair of chinstrap penguins in Antarctica. New research suggests that, if carbon dioxide emissions continue on their current trajectory, Earth may return to a climate of tens of millions of years ago when the Antarctic ice sheet did not exist.
Credit: UCAR, Photo by Andrew Watt

The magnitude of climate change during Earth's deep past suggests that future temperatures may eventually rise far more than projected if society continues its pace of emitting greenhouse gases, a new analysis concludes.

Related Articles


The study, by National Center for Atmospheric Research (NCAR) scientist Jeffrey Kiehl, will appear as a "Perspectives" piece in this week's issue of the journal Science.

Building on recent research, the study examines the relationship between global temperatures and high levels of carbon dioxide in the atmosphere tens of millions of years ago. It warns that, if carbon dioxide emissions continue at their current rate through the end of this century, atmospheric concentrations of the greenhouse gas will reach levels that existed about 30 million to 100 million years ago, when global temperatures averaged about 29 degrees Fahrenheit (16 degrees Celsius) above pre-industrial levels.

Kiehl said that global temperatures may gradually rise over centuries or millennia in response to the carbon dioxide. The elevated levels of carbon dioxide may remain in the atmosphere for tens of thousands of years, according to recent computer model studies of geochemical processes that the study cites.

The study also indicates that the planet's climate system, over long periods of times, may be at least twice as sensitive to carbon dioxide than currently projected by computer models, which have generally focused on shorter-term warming trends. This is largely because even sophisticated computer models have not yet been able to incorporate critical processes, such as the loss of ice sheets, that take place over centuries or millennia and amplify the initial warming effects of carbon dioxide.

"If we don't start seriously working toward a reduction of carbon emissions, we are putting our planet on a trajectory that the human species has never experienced," says Kiehl, a climate scientist who specializes in studying global climate in Earth's geologic past. "We will have committed human civilization to living in a different world for multiple generations."

The Perspectives article pulls together several recent studies that look at various aspects of the climate system, while adding a mathematical approach by Kiehl to estimate average global temperatures in the distant past. Its analysis of the climate system's response to elevated levels of carbon dioxide is supported by previous studies that Kiehl cites. The work was funded by the National Science Foundation, NCAR's sponsor.

Learning from Earth's past

Kiehl focused on a fundamental question: when was the last time Earth's atmosphere contained as much carbon dioxide as it may by the end of this century?

If society continues on its current pace of increasing the burning of fossil fuels, atmospheric levels of carbon dioxide are expected to reach about 900 to 1,000 parts per million by the end of this century. That compares with current levels of about 390 parts per million, and pre-industrial levels of about 280 parts per million.

Since carbon dioxide is a greenhouse gas that traps heat in Earth's atmosphere, it is critical for regulating Earth's climate. Without carbon dioxide, the planet would freeze over. But as atmospheric levels of the gas rise, which has happened at times in the geologic past, global temperatures increase dramatically and additional greenhouse gases, such as water vapor and methane, enter the atmosphere through processes related to evaporation and thawing. This leads to further heating.

Kiehl drew on recently published research that, by analyzing molecular structures in fossilized organic materials, showed that carbon dioxide levels likely reached 900 to 1,000 parts per million about 35 million years ago.

At that time, temperatures worldwide were substantially warmer than at present, especially in polar regions -- even though the Sun's energy output was slightly weaker. The high levels of carbon dioxide in the ancient atmosphere kept the tropics at about 9-18 degrees F (5-10 degrees C) above present-day temperatures. The polar regions were some 27-36 degrees F (15-20 degrees C) above present-day temperatures.

Kiehl applied mathematical formulas to calculate that Earth's average annual temperature 30 to 40 million years ago was about 88 degrees F (31 degrees C) -- substantially higher than the pre-industrial average temperature of about 59 degrees F (15 degrees C).

Twice the heat?

The study also found that carbon dioxide may have at least twice the effect on global temperatures than currently projected by computer models of global climate.

The world's leading computer models generally project that a doubling of carbon dioxide in the atmosphere would have a heating impact in the range of 0.5 to 1.0 degree C watts per square meter. (The unit is a measure of the sensitivity of Earth's climate to changes in greenhouse gases.) However, the published data show that the comparable impact of carbon dioxide 35 million years ago amounted to about 2 degrees C watts per square meter.

Computer models successfully capture the short-term effects of increasing carbon dioxide in the atmosphere. But the record from Earth's geologic past also encompasses longer-term effects, which accounts for the discrepency in findings. The eventual melting of ice sheets, for example, leads to additional heating because exposed dark surfaces of land or water absorb more heat than ice sheets.

"This analysis shows that on longer time scales our planet may be much more sensitive to greenhouse gases than we thought," Kiehl says.

Climate scientists are currently adding more sophisticated depictions of ice sheets and other factors to computer models. As these improvements come on line, Kiehl believes that the computer models and the paleoclimate record will be in closer agreement, showing that the impacts of carbon dioxide on climate over time will likely be far more substantial than recent research has indicated.

Because carbon dioxide is being pumped into the atmosphere at a rate that has never been experienced, Kiehl could not estimate how long it would take for the planet to fully heat up. However, a rapid warm-up would make it especially difficult for societies and ecosystems to adapt, he says.

If emissions continue on their current trajectory, "the human species and global ecosystems will be placed in a climate state never before experienced in human history," the paper states.


Story Source:

The above story is based on materials provided by National Center for Atmospheric Research/University Corporation for Atmospheric Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jeffrey Kiehl. Lessons from Earth's Past. Science, 2011; 331 (6014): 158-159 DOI: 10.1126/science.1199380

Cite This Page:

National Center for Atmospheric Research/University Corporation for Atmospheric Research. "Earth's hot past could be prologue to future climate." ScienceDaily. ScienceDaily, 14 January 2011. <www.sciencedaily.com/releases/2011/01/110113141607.htm>.
National Center for Atmospheric Research/University Corporation for Atmospheric Research. (2011, January 14). Earth's hot past could be prologue to future climate. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2011/01/110113141607.htm
National Center for Atmospheric Research/University Corporation for Atmospheric Research. "Earth's hot past could be prologue to future climate." ScienceDaily. www.sciencedaily.com/releases/2011/01/110113141607.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ivory Trade Boom Swamps Law Efforts

Ivory Trade Boom Swamps Law Efforts

Reuters - Business Video Online (Dec. 17, 2014) Demand for ivory has claimed the lives of tens of thousands of African elephants and now a conservation report says the illegal trade is overwhelming efforts to enforce the law. Amy Pollock reports. Video provided by Reuters
Powered by NewsLook.com
Indictments in West Virginia Chemical Spill Case

Indictments in West Virginia Chemical Spill Case

AP (Dec. 17, 2014) A grand jury indicted four former executives of Freedom Industries, the company at the center of the Jan. 9, 2014 chemical spill in Charleston, West Virginia. The spill contaminated the Elk River and the water supply of 300,000 people. (Dec. 17) Video provided by AP
Powered by NewsLook.com
Uphill Battle to Tackle Indonesian Shark Fishing

Uphill Battle to Tackle Indonesian Shark Fishing

AFP (Dec. 17, 2014) Sharks are hauled ashore every day at a busy market on the central Indonesian island of Lombok, the hub of a booming trade that provides a livelihood for local fishermen but is increasingly alarming environmentalists. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
France's Sauternes Wine Threatened by New Train Line

France's Sauternes Wine Threatened by New Train Line

AFP (Dec. 16, 2014) Winemakers in southwestern France's Bordeaux are concerned about a proposed high speed train line that could affect the microclimate required for the region's sweet wine. Duration: 01:06 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins