Featured Research

from universities, journals, and other organizations

Sleep researchers apply fatigue model to fatal commuter air crash

Date:
January 20, 2011
Source:
Washington State University
Summary:
Sleep researchers have determined that the air traffic controller in the crash of a Lexington, Ky., commuter flight was substantially fatigued when he failed to detect that the plane was on the wrong runway and cleared it for takeoff. Writing in a new study, the researchers say their findings suggest that mathematical models predicting fatigue could lead to schedules that reduce the risk of accidents by taking advantage of workers' sleep schedules and biological, or circadian, clocks.

Washington State University sleep researchers have determined that the air traffic controller in the crash of a Lexington, Ky., commuter flight was substantially fatigued when he failed to detect that the plane was on the wrong runway and cleared it for takeoff.

Writing in the journal Accident Analysis and Prevention, the researchers come short of saying his fatigue caused the accident. But they say their findings suggest that mathematical models predicting fatigue could lead to schedules that reduce the risk of accidents by taking advantage of workers' sleep schedules and biological, or circadian, clocks.

In the case of Comair Flight 5191, the air traffic controller was finishing an overnight shift with just two or three hours of sleep the previous afternoon.

"He was tired," says Gregory Belenky, a paper co-author and director of the Sleep and Performance Research Center at WSU Spokane, "and he was working a schedule that was not circadian friendly."

The Atlanta-bound Delta Connection flight crashed on takeoff shortly after 6 a.m. on August 27, 2006, killing 49 of the 50 people on board. The National Transportation Safety Board concluded the flight crew failed to detect that the plane was on a general aviation runway half as long as the assigned runway.

Bluegrass Airport's lone air traffic controller had cleared the plane for takeoff. But the WSU researchers stress that they are not fixing blame for the crash on him, nor can they say if his fatigue was the cause of the accident.

"We're identifying times of day that are relatively more dangerous than other times of day," says Lora Wu, a Sleep and Performance Center research assistant and co-author of the paper. "We're not trying to place blame on any of the individuals involved."

The researchers used a mathematical model to analyze the controller's work history, which consisted of two evening shifts, two day shifts and the overnight shift leading up to the accident. They also incorporated his circadian rhythm, which tends to prime the body for sleep based on the cycles of day and night.

While the controller had 10 hours off before his last shift, says Belenky, his circadian cycle let him get only two or three hours of sleep and, as he told the NTSB, it was "not real good." A body needs closer to eight hours of sleep, says Belenky, to get the brain "back to spec."

As a result, the researchers estimate the controller was performing at 71 percent of his effectiveness at the time of the accident. They lacked the data to make similar estimates for the flight captain and first officer, but note their behavior suggests they were fatigued. This includes boarding and powering up the wrong aircraft at first and doing an incomplete pre-flight briefing.

The challenge of safer, sleep-friendly scheduling extends to all manner of 24/7 operations, including hospitals, policing, the military, mining and energy generation. Currently, says Belenky, operators use rule-based schedules for staffing. But research suggests that real-time data collection might lead the way to more flexible schedules "based on how much sleep people have actually attained, not on your best guess on how much they were likely to have gotten."


Story Source:

The above story is based on materials provided by Washington State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Shawn A. Pruchnicki, Lora J. Wu, Gregory Belenky. An exploration of the utility of mathematical modeling predicting fatigue from sleep/wake history and circadian phase applied in accident analysis and prevention: The crash of Comair Flight 5191. Accident Analysis & Prevention, 2011; DOI: 10.1016/j.aap.2010.12.010

Cite This Page:

Washington State University. "Sleep researchers apply fatigue model to fatal commuter air crash." ScienceDaily. ScienceDaily, 20 January 2011. <www.sciencedaily.com/releases/2011/01/110120090952.htm>.
Washington State University. (2011, January 20). Sleep researchers apply fatigue model to fatal commuter air crash. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2011/01/110120090952.htm
Washington State University. "Sleep researchers apply fatigue model to fatal commuter air crash." ScienceDaily. www.sciencedaily.com/releases/2011/01/110120090952.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins