Featured Research

from universities, journals, and other organizations

Nanoscale transistors used to study single-molecule interactions

Date:
January 25, 2011
Source:
Columbia University
Summary:
Researchers have figured out a way to study single-molecule interactions on very short time scales using nanoscale transistors. Researchers show how, for the first time, transistors can be used to detect the binding of the two halves of the DNA double helix with the DNA tethered to the transistor sensor.

An interdisciplinary team from Columbia University that includes electrical engineers from Columbia's Engineering School, together with researchers from the University's departments of Physics and Chemistry, has figured out a way to study single-molecule interactions on very short time scales using nanoscale transistors. In a paper to be published online January 23 in Nature Nanotechnology, they show how, for the first time, transistors can be used to detect the binding of the two halves of the DNA double helix with the DNA tethered to the transistor sensor. The transistors directly detect and amplify the charge of these single biomolecules.

Prior to this work, scientists have largely used fluorescence techniques to look at interactions at the level of single molecules. These studies have yielded fundamental understanding of folding, assembly, dynamics, and function of proteins and other cellular machinery. But these techniques require that the target molecules being studied be labeled with fluorescent reporter molecules, and the bandwidths for detection are limited by the time required to collect the very small number of photons emitted by these reporters.

The Columbia researchers, including Professor of Electrical Engineering Ken Shepard, Professor of Chemistry Colin Nuckolls, and graduate students Sebastian Sorgenfrei and Chien-Yang Chiu, realized that transistors, like those used in modern integrated circuits, have reached the same nanoscale dimensions as single molecules. "So this raised the interesting question," said Sorgenfrei, the lead author on the study, "as to whether these very small transistors could be used to study individual molecules."

They have discovered that the answer is "yes." The transistors employed in this study are fashioned from carbon nanotubes, which are cylindrical tubes made entirely of carbon atoms. While these are still emerging devices for electronics applications, they are exquisitely sensitive because the biomolecule can be directly tethered to the carbon nanotube wall creating enough sensitivity to detect a single DNA molecule.

The Columbia team expects this new technique to be a powerful tool for looking at single molecule interactions and is looking at instrumentation applications that currently rely almost exclusively on fluorescence such as protein assays and DNA sequencing. They also plan to study interactions at time scales several orders of magnitude greater than current techniques based on fluorescence.

"The area of single molecule research is an important one and pushes the envelope on our sensing systems," commented Ken Shepard, Professor of Electrical Engineering at Columbia Engineering. "There is a huge potential for modern nanoelectronics to play an important role in this field. Our work, which has been a terrific collaboration between groups from Electrical Engineering, Chemistry, and Physics, is a great example of how nanoelectronics and biotechnology can be combined to produce new, exciting results."

Shepard hopes that this research, which was funded primarily by the National Science Foundation and the National Institutes of Health, will lead to exciting new applications for nanoscale electronic circuits.


Story Source:

The above story is based on materials provided by Columbia University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sebastian Sorgenfrei, Chien-yang Chiu, Ruben L. Gonzalez, Young-Jun Yu, Philip Kim, Colin Nuckolls, Kenneth L. Shepard. Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nature Nanotechnology, 2011; DOI: 10.1038/nnano.2010.275

Cite This Page:

Columbia University. "Nanoscale transistors used to study single-molecule interactions." ScienceDaily. ScienceDaily, 25 January 2011. <www.sciencedaily.com/releases/2011/01/110124102946.htm>.
Columbia University. (2011, January 25). Nanoscale transistors used to study single-molecule interactions. ScienceDaily. Retrieved August 2, 2014 from www.sciencedaily.com/releases/2011/01/110124102946.htm
Columbia University. "Nanoscale transistors used to study single-molecule interactions." ScienceDaily. www.sciencedaily.com/releases/2011/01/110124102946.htm (accessed August 2, 2014).

Share This




More Matter & Energy News

Saturday, August 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Cycle World (July 30, 2014) The Bonnier Motorcycle Group presents Smoked; a three part video series. In this episode the 2015 Ducati Diavel takes on the 2014 Chevy Corvette Stingray Video provided by Cycle World
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins