Featured Research

from universities, journals, and other organizations

Mathematicians use cell 'profiling' to detect abnormalities -- including cancer

Date:
January 25, 2011
Source:
Ohio State University
Summary:
Mathematicians are finding ways to tell the difference between healthy cells and abnormal cells, such as cancer cells, based on the way the cells look and move. They are creating mathematical equations that describe the shape and motion of single cells for laboratory analysis.

An Ohio State University mathematician and his colleagues are finding ways to tell the difference between healthy cells and abnormal cells, such as cancer cells, based on the way the cells look and move.

Related Articles


They are creating mathematical equations that describe the shape and motion of single cells for laboratory analysis.

Though this research is in its early stages, it represents an entirely new way of identifying cell abnormalities, including cancer. It could one day be useful in gauging future stages of a disease -- for example, by detecting whether cancer cells are aggressive and likely to spread throughout the body, or metastasize.

In a paper published online in the Bulletin of Mathematical Biology, researchers describe a mathematical model which analyzes image sequences of single, live cells to determine abnormalities manifested in their shape and behavior. A brain tumor cell was one of the cell types they analyzed in the study.

Huseyin Coskun, visiting assistant professor of mathematics at Ohio State and leader of the project, described their novel approach as a first step toward developing mathematical tools for diagnosing cell abnormalities and for giving potential prognoses.

Because the technique would allow doctors to view how cancer cells behave under different physical or chemical conditions, it could also be used to test different treatment strategies for each individual patient -- such as determining the most efficient dose of chemotherapeutic agents or radiation -- or even to test entirely new treatments.

In addition, Coskun sees his technique as a tool for also pathologists, who typically look at photographs of biopsied cells to identify cancer and judge how advanced the cancer may be.

"A pathologist can diagnose cancer, but as far as predicting the future, they don't have many tools at their disposal -- particularly if a cancer is in its early stages," Coskun said. "That's why I believe that one of the most important applications of this research is profiling cancer cells. Given a cell's motion and its morphological changes, we want to be able to determine what's happening inside the cell. If it looks like a cancer cell, and a particularly aggressive one, we would like to quantify how likely it is that the cancer cells will invade the body."

In a very basic sense, diagnosing a "sick" cell such as a cancer cell by its appearance, motion, and behavior is analogous to diagnosing a sick human, he said. "When we get sick, our behavior changes. We may stay in bed, sleep a lot -- maybe we are coughing or sneezing. These are basic symptoms that a doctor will consider to determine if we're sick. Abnormalities oftentimes manifest themselves as behavioral changes in all living organisms. Therefore, a careful analysis of and profiling the behavioral patterns of single cells could provide valuable information."

Cell motion is important for all life, he continued. White blood cells move when they attack microbes that have invaded the body. A wound heals when newly grown cells move in to close it. But something about aggressive cancer cells causes them to move from the tumor where they originated into the blood stream, where they migrate to different organs and grow out of control.

Living cells often change shape, expand, or contract, and Coskun believes that he and his colleagues can create unique "personality profiles" of cancer cells.

Coskun and his colleague, Hasan Coskun, assistant professor of mathematics at Texas A&M University-Commerce, used a branch of physics called continuum mechanics to derive equations that describe cells' appearance and behavior. They compared their model outcomes to findings from past cancer studies, which indicated that cancer cells are more deformable than normal cells.

The researchers discovered that their model results agree with those experimental findings.

Obtaining data from live cell image sequences to use as an input in the mathematical models is not easy. For this, Coskun collaborated with Hakan Ferhatosmanoglu, an associate professor, and his then-student, Ahmet Sacan, both of computer science and engineering at Ohio State. They created open source software called CellTrack to extract data from movies of cell motion.

Given a movie of live cells under the microscope, CellTrack tracks individual cells, extracts data that can be used in the mathematical models, and provides other useful statistical information about the motion.

Huseyin Coskun acknowledged the current limits of his methodology. The researchers were able to show that their mathematical models can be applied to analyze single cell motion and obtain useful information. They were also able to hypothesize a biological explanation for very complex mechanism of cell motion based on their mathematical model outcomes. But he and his partners need many more high-resolution movies of healthy cells and cancer cells to build upon this initial work. That's why Coskun is setting up collaborations with medical researchers at Ohio State and other universities.

Coskun believes that mathematical techniques such as his are becoming more common in the biomedical sciences because they allow researchers to perform studies that would be too difficult, time-consuming or expensive in real life. He hopes his technique could be used to answer emerging questions in cell biology.


Story Source:

The above story is based on materials provided by Ohio State University. The original article was written by Pam Frost Gorder. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hasan Coskun, Huseyin Coskun. Cell Physician: Reading Cell Motion. Bulletin of Mathematical Biology, 2010; DOI: 10.1007/s11538-010-9580-x

Cite This Page:

Ohio State University. "Mathematicians use cell 'profiling' to detect abnormalities -- including cancer." ScienceDaily. ScienceDaily, 25 January 2011. <www.sciencedaily.com/releases/2011/01/110125141827.htm>.
Ohio State University. (2011, January 25). Mathematicians use cell 'profiling' to detect abnormalities -- including cancer. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2011/01/110125141827.htm
Ohio State University. "Mathematicians use cell 'profiling' to detect abnormalities -- including cancer." ScienceDaily. www.sciencedaily.com/releases/2011/01/110125141827.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins