Featured Research

from universities, journals, and other organizations

A mix of tiny gold and viral particles, and the DNA ties that bind them

Date:
January 28, 2011
Source:
University of Rochester Medical Center
Summary:
Scientists have created a diamond-like lattice composed of gold nanoparticles and viral particles, woven together and held in place by strands of DNA. The structure -- a distinctive mix of hard, metallic nanoparticles and organic viral pieces known as capsids, linked by the very stuff of life, DNA -- marks a remarkable step in scientists' ability to combine an assortment of materials to create infinitesimal devices.

Crystal lattice created by Sung Yong Park and colleagues.
Credit: Illustration by Adolf Lachman

Scientists have created a diamond-like lattice composed of gold nanoparticles and viral particles, woven together and held in place by strands of DNA. The structure -- a distinctive mix of hard, metallic nanoparticles and organic viral pieces known as capsids, linked by the very stuff of life, DNA -- marks a remarkable step in scientists' ability to combine an assortment of materials to create infinitesimal devices.

Related Articles


The research, done by scientists at the University of Rochester Medical Center, Scripps Research Institute, and Massachusetts Institute of Technology, was published recently in Nature Materials.

While people commonly think of DNA as a blueprint for life, the team used DNA instead as a tool to guide the precise positioning of tiny particles just one-millionth of a centimeter across, using DNA to chaperone the particles.

Central to the work is the unique attraction of each of DNA's four chemical bases to just one other base. The scientists created specific pieces of DNA and then attached them to gold nanoparticles and viral particles, choosing the sequences and positioning them exactly to force the particles to arrange themselves into a crystal lattice.

When scientists mixed the particles, out of the brew emerged a sodium thallium crystal lattice. The device "self assembled" or literally built itself.

The research adds some welcome flexibility to the toolkit that scientists have available to create nano-sized devices.

"Organic materials interact in ways very different from metal nanoparticles. The fact that we were able to make such different materials work together and be compatible in a single structure demonstrates some new opportunities for building nano-sized devices," said Sung Yong Park, Ph.D., a research assistant professor of Biostatistics and Computational Biology at Rochester.

Park and M.G Finn, Ph.D., of Scripps Research Institute are corresponding authors of the paper.

Such a crystal lattice is potentially a central ingredient to a device known as a photonic crystal, which can manipulate light very precisely, blocking certain colors or wavelengths of light while letting other colors pass. While 3-D photonic crystals exist that can bend light at longer wavelengths, such as the infrared, this lattice is capable of manipulating visible light. Scientists foresee many applications for such crystals, such as optical computing and telecommunications, but manufacturing and durability remain serious challenges.

It was three years ago that Park, as part of a larger team of colleagues at Northwestern University, first produced a crystal lattice with a similar method, using DNA to link gold nanospheres. The new work is the first to combine particles with such different properties -- hard gold nanoparticles and more flexible organic particles.

Within the new structure, there are actually two distinct forces at work, Park said. The gold particles and the viral particles repel each other, but their deterrence is countered by the attraction between the strategically placed complementary strands of DNA. Both phenomena play a role in creating the rigid crystal lattice. It's a little bit like how countering forces keep our curtains up: A spring in a curtain rod pushes the rod to lengthen, while brackets on the window frame counter that force, creating a taut, rigid device.

Other authors of the paper include Abigail Lytton-Jean, Ph.D., of MIT, Daniel Anderson, Ph.D., of Harvard and MIT, and Petr Cigler, Ph.D., formerly of Scripps Research Institute and now at the Academy of Sciences of the Czech Republic. Park's work was supported by the National Institute of Allergy and Infectious Diseases.


Story Source:

The above story is based on materials provided by University of Rochester Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Petr Cigler, Abigail K. R. Lytton-Jean, Daniel G. Anderson, M. G. Finn, Sung Yong Park. DNA-controlled assembly of a NaTl lattice structure from gold nanoparticles and proteinnanoparticles. Nature Materials, 2010; 9 (11): 918 DOI: 10.1038/nmat2877

Cite This Page:

University of Rochester Medical Center. "A mix of tiny gold and viral particles, and the DNA ties that bind them." ScienceDaily. ScienceDaily, 28 January 2011. <www.sciencedaily.com/releases/2011/01/110127131111.htm>.
University of Rochester Medical Center. (2011, January 28). A mix of tiny gold and viral particles, and the DNA ties that bind them. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2011/01/110127131111.htm
University of Rochester Medical Center. "A mix of tiny gold and viral particles, and the DNA ties that bind them." ScienceDaily. www.sciencedaily.com/releases/2011/01/110127131111.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
First Etihad Superjumbo Flight in December

First Etihad Superjumbo Flight in December

AFP (Dec. 18, 2014) The first flight of Etihad Airways' long-awaited Airbus A380 superjumbo will take place later in December, the Abu Dhabi carrier said Thursday, also announcing its first Boeing 787 Dreamliner route. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins