Featured Research

from universities, journals, and other organizations

Cow rumen enzymes for better biofuels

Date:
January 28, 2011
Source:
University of Illinois at Urbana-Champaign
Summary:
When it comes to breaking down plant matter and converting it to energy, the cow has it all figured out. Its digestive system allows it to eat more than 150 pounds of plant matter every day. Now researchers report that they have found dozens of previously unknown microbial enzymes in the bovine rumen -- the cow's primary grass-digestion chamber -- that contribute to the breakdown of switchgrass, a renewable biofuel energy source.

The researchers placed mesh bags of switchgrass in the cow rumen to isolate those microbes that adhere to the grass and the microbial enzymes that help break down plant biomass. This effort yielded dozens of new candidate enzymes for biofuel production.
Credit: L. Brian Stauffer

When it comes to breaking down plant matter and converting it to energy, the cow has it all figured out. Its digestive system allows it to eat more than 150 pounds of plant matter every day. Now researchers report that they have found dozens of previously unknown microbial enzymes in the bovine rumen -- the cow's primary grass-digestion chamber -- that contribute to the breakdown of switchgrass, a renewable biofuel energy source.

The study, in the journal Science, tackles a major barrier to the development of more affordable and environmentally sustainable biofuels. Rather than relying on the fermentation of simple sugars in food crops such as corn, beets or sugar cane (which is environmentally costly and threatens the food supply) researchers are looking for better ways to convert the leaves and stems of grasses or woody plants to liquid fuel. These "second-generation" biofuels ideally will be "carbon neutral," absorbing as much carbon dioxide from the atmosphere as is emitted in their processing and use.

But breaking down and releasing the energy in the plant cell wall is no easy task.

"The problem with second-generation biofuels is the problem of unlocking the soluble fermentable sugars that are in the plant cell wall," said University of Illinois animal sciences professor Roderick Mackie, an author on the study whose research into the microbial life of the bovine rumen set the stage for the new approach. "The cow's been doing that for millions of years. And we want to examine the mechanisms that the cow uses to find enzymes for application in the biofuels industry."

In previous studies beginning in 2008, Mackie and Washington State University professor Matthias Hess (then a postdoctoral researcher at the U.S. Department of Energy Joint Genome Institute in California) used a decades-old technique for studying ruminant nutrition. They placed small, mesh bags containing either milled alfalfa or switchgrass through a cannula (a permanent, surgically installed portal) into the cow rumen and examined the microbes that adhered to each plant type after two or three days. Visual and chemical analyses showed that microbes in the rumen were efficiently breaking down both types of plant matter, with a different community of microbes attacking each plant type.

This and later experiments proved that the technique could help scientists find the microbes in the cow rumen that were most efficient at degrading a particular type of plant matter, said Mackie, who is a professor in the U. of I. Institute for Genomic Biology.

In the new study, the researchers focused on switchgrass, a promising biofuels crop. After incubating the switchgrass in the rumen for 72 hours, researchers conducted a genomic analysis of all of the microbes that adhered to switchgrass. This "metagenomic" approach, led by Edward Rubin, of the DOE Joint Genome Institute and the Lawrence Berkeley National Laboratory, analyzed all the genes in all the microbes present in a sample, rather than one at a time. This gave a more accurate picture of the processes in the rumen that make plant degradation possible, Mackie said.

"Bacteria are microbes," he said. "They don't live alone. They live in consortia, and they all contribute to the functioning and the services provided."

Using a variety of techniques, the researchers sequenced and analyzed the total DNA in the sample, a huge undertaking that allowed them to identify 27,755 potential "carbohydrate-active" genes. They cloned some of these genes into bacteria, and successfully produced 90 proteins of interest. They found that 57 percent of these proteins demonstrated enzymatic activity against cellulosic plant material.

The researchers also were able to assemble the genomes of 15 previously "uncultured" (never before grown in a lab) microbes, said Hess, who is first author on the new study. Several techniques, including sequencing the genomes of individual cells and comparing those to the assembled genomes, validated this approach, he said.

These results suggest that the bovine rumen is one of the best microbial habitats to explore for sources of plant-degrading enzymes, the researchers reported.

The research team also included scientists from the DOE Joint Genome Institute, the University of California at Berkeley and Illumina Inc. The BP-sponsored Energy Biosciences Institute funded the research carried out at Illinois.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hess, et al. Metagenomic Discovery of Biomass-Degrading Genes and Genomes From Cow Rumen. Science, 28 January 2011: 463-467 DOI: 10.1126/science.1200387

Cite This Page:

University of Illinois at Urbana-Champaign. "Cow rumen enzymes for better biofuels." ScienceDaily. ScienceDaily, 28 January 2011. <www.sciencedaily.com/releases/2011/01/110127141705.htm>.
University of Illinois at Urbana-Champaign. (2011, January 28). Cow rumen enzymes for better biofuels. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2011/01/110127141705.htm
University of Illinois at Urbana-Champaign. "Cow rumen enzymes for better biofuels." ScienceDaily. www.sciencedaily.com/releases/2011/01/110127141705.htm (accessed September 21, 2014).

Share This



More Plants & Animals News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: San Diego Zoo Welcomes Cheetah Cubs

Raw: San Diego Zoo Welcomes Cheetah Cubs

AP (Sep. 20, 2014) The San Diego Zoo has welcomed two Cheetah cubs to its Safari Park. The nearly three-week-old female cubs are being hand fed and are receiving around the clock care. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Chocolate Museum Opens in Brussels

Chocolate Museum Opens in Brussels

AFP (Sep. 19, 2014) Considered a "national heritage" in Belgium, chocolate now has a new museum in Brussels. In a former chocolate factory, visitors to the permanent exhibition spaces, workshops and tastings can discover derivatives of the cocoa bean. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins