Featured Research

from universities, journals, and other organizations

Altered cell metabolism has role in brain tumor development

Date:
February 1, 2011
Source:
Duke University Medical Center
Summary:
Scientists have discovered that genetic mutations found in brain tumors can alter tumor metabolism. This work could help lead to new designs for anti-cancer drugs based on the unique properties of these tumors.

Scientists at Duke Cancer Institute have discovered that genetic mutations found in brain tumors can alter tumor metabolism. This work could help lead to new designs for anti-cancer drugs based on the unique properties of these tumors.

Related Articles


"Malignant glioma appears to be at least two large subclasses of diseases -- one that involves mutations in the IDH1 and IDH2 genes and one that doesn't," said Hai Yan, M.D., Ph.D., an associate professor in the Duke Department of Pathology who led a collaborative group of researchers to conduct the study. "The IDH mutation can serve as a biomarker to help single out individuals who are likely to have better outcomes and who might then receive a particular type of treatment based on their tumor IDH mutation status."

"What we and other researchers are learning now is that certain changes in cellular metabolism are probably a hallmark of cancer," said Yan, who works in the Preston Robert Tisch Brain Tumor Center at Duke and the Pediatric Brain Tumor Foundation Institute.

The study was published in the journal Proceedings of the National Academy of Sciences Early Edition the week of Jan. 31.

Two years ago, work by Yan and his colleagues showed that a mutation that disrupts the isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) genes was common in some types of incurable brain tumors, including astrocytomas, oligodendrogliomas, and glioblastomas. Their work suggested that these tumors require the gene to go awry at some point during cancer development. Though key IDH discoveries have been made around the world, a reason that IDH gene mutations could have such a profound influence on brain cancer has remained elusive.

In the current study, Yan's group solved the connection to metabolism. The IDH1 and IDH2 genes are known to play an important role in cell metabolism -- the conversion of nutrients into energy and into building blocks to manufacture new cells.

The researchers examined concentrations of hundreds of metabolites, including sugar, protein, and fat molecules, in cancer cells that they were able to grow in their laboratory. Technological improvements in the past five years -- the science of metabolomics -- have made it possible for scientists to simultaneously look at hundreds or thousands of such metabolites to learn what happened in cells with the mutation.

The technology revealed that more than 100 metabolites had altered concentrations in cells with the defective IDH1 or IDH2 genes compared to cells without the defective genes.

One very common metabolite in the human brain -- N-acetyl-aspartyl-glutamate -- was found to be 50 times less common in cells that had that IDH1 mutation compared to those that did not, said Zach Reitman, a student pursuing combined M.D. and Ph.D. degrees in the Medical Scientist Training Program at Duke. "The fact that defective genes can alter the metabolism of cancer cells could mean that altering cellular metabolism is an important step in brain tumor development."

Ivan Spasojevic, Ph.D., assistant director and manager of the Duke Clinical Pharmacology Laboratory, said, "We devised a brand new method to confirm that some of these changes were also present in patients with brain tumors. This approach gave us confidence that what we saw in metabolomics studies of cancer cells in petri dishes was what was really happening in patients," Spasojevic said.

Tumors were removed as part of the patients' normal treatment course, and the tumor tissue was analyzed with patient consent.

"The study emphasized that cellular metabolism could potentially be an 'Achilles heel' for brain tumors, and it points to several promising avenues for future research into new treatments for brain tumors in particular," said Genglin Jin, Ph.D., a key author and postdoctoral research fellow in Yan's lab.

Other authors of the study included Yiping He, M.D., Ph.D., and Darell Bigner, M.D., Ph.D., who are also with the Duke Cancer Institute, the Preston Robert Tisch Brain Tumor Center at Duke and the Pediatric Brain Tumor Foundation Institute, and in the Department of Pathology. Other authors work at the Ludwig Center for Cancer Genetics and Therapeutics and the Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center.

Funding came from American Cancer Society, the Pediatric Brain Tumor Foundation Institute, the Virginia and D.K. Ludwig Fund for Cancer Research, and National Institutes of Health grants. Yan, Bigner and two Johns Hopkins (JHU) scientists reported being eligible for royalties received by JHU on sales of products related to research on IDH1, under licensing agreements between the JHU and Beckman Coulter.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Duke University Medical Center. "Altered cell metabolism has role in brain tumor development." ScienceDaily. ScienceDaily, 1 February 2011. <www.sciencedaily.com/releases/2011/01/110131153259.htm>.
Duke University Medical Center. (2011, February 1). Altered cell metabolism has role in brain tumor development. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2011/01/110131153259.htm
Duke University Medical Center. "Altered cell metabolism has role in brain tumor development." ScienceDaily. www.sciencedaily.com/releases/2011/01/110131153259.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Oxfam Calls for Massive Aid for Ebola-Hit West Africa

Oxfam Calls for Massive Aid for Ebola-Hit West Africa

AFP (Jan. 29, 2015) Oxfam International has called for a multi-million dollar post-Ebola "Marshall Plan", with financial support given by wealthy countries, to help Guinea, Sierra Leone and Liberia to recover. Duration: 01:10 Video provided by AFP
Powered by NewsLook.com
Are We Winning The Fight Against Ebola?

Are We Winning The Fight Against Ebola?

Newsy (Jan. 29, 2015) The World Health Organization announced the fight against Ebola has entered its second phase as the number of cases per week has steadily dropped. Video provided by Newsy
Powered by NewsLook.com
Measles Scare Sends 66 Calif. Students Home

Measles Scare Sends 66 Calif. Students Home

AP (Jan. 29, 2015) Officials say 66 students at a Southern California high school have been told to stay home through the end of next week because they may have been exposed to measles and are not vaccinated. (Jan. 29) Video provided by AP
Powered by NewsLook.com
Group Encourages Black Moms to Breastfeed

Group Encourages Black Moms to Breastfeed

AP (Jan. 29, 2015) A grassroots effort is underway in several US cities to encourage more black women to breastfeed their babies by teaching them the benefits of the age-old practice, which is sometimes shunned in African-American communities. (Jan. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins