Featured Research

from universities, journals, and other organizations

Atom-thick sheets unlock future technologies

Date:
February 8, 2011
Source:
University of Oxford
Summary:
A new way of splitting layered materials, similar to graphite, into sheets of material just one atom thick could lead to revolutionary new electronic and energy storage technologies.

Nanosheet imaged with an electron microscope (STEM).
Credit: Image courtesy of University of Oxford

A new way of splitting layered materials, similar to graphite, into sheets of material just one atom thick could lead to revolutionary new electronic and energy storage technologies.

An international team, led by Oxford University and Trinity College Dublin scientists, has invented a versatile method for creating these one-atom thick 'nanosheets' from a range of materials using mild ultrasonic pulses, like those generated by jewellery cleaning devices, and common solvents. The new method is simple, fast, and inexpensive, and could be scaled up to work on an industrial scale.

The team publish a report of the research in this week's Science.

Each one-millimetre-thick layer of graphite is made up of around three million layers of graphene -- a flat sheet of carbon one atom thick -- stacked one on top of the other.

'Because of its extraordinary electronic properties graphene has been getting all the attention, including a recent Nobel Prize, as physicists hope that it might, one day, compete with silicon in electronics,' said Dr Valeria Nicolosi of Oxford University's Department of Materials, who led the research with Professor Jonathan Coleman of Trinity College Dublin. 'But in fact there are hundreds of other layered materials that could enable us to create powerful new technologies.'

Professor Coleman, of Trinity College Dublin, said: 'These novel materials have chemical and electronic properties which are well suited for applications in new electronic devices, super-strong composite materials and energy generation and storage. In particular, this research represents a major breakthrough towards the development of efficient thermoelectric materials.'

There are over 150 of these exotic layered materials -- such as Boron Nitride, Molybdenum disulfide, and Tungsten disulfide -- that have the potential to be metallic, semi-metallic or semiconducting depending on their chemical composition and how their atoms are arranged.

For decades researchers have tried to create nanosheets of these kind of materials as arranging them in atom-thick layers would enable us to unlock their unusual electronic and thermoelectric properties. However, all previous methods were extremely time consuming and laborious and the resulting materials were fragile and unsuited to most applications.

'Our new method offers low-costs, a very high yield and a very large throughput: within a couple of hours, and with just 1 mg of material, billions and billions of one-atom-thick graphene-like nanosheets can be made at the same time from a wide variety of exotic layered materials,' said Dr Nicolosi.

Nanosheets created using this method can be sprayed onto the surface of other materials, such as silicon, to produce 'hybrid films' which, potentially, enable their exotic abilities to be integrated with conventional technologies. Such films could be used to construct, among other things, new designs of computing devices, sensors or batteries.

The work was conducted by a team including scientists from Oxford University, Trinity College Dublin, Imperial College London, Korea University, and Texas A&M University (USA).


Story Source:

The above story is based on materials provided by University of Oxford. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, V. Nicolosi. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science, 2011; 331 (6017): 568 DOI: 10.1126/science.1194975

Cite This Page:

University of Oxford. "Atom-thick sheets unlock future technologies." ScienceDaily. ScienceDaily, 8 February 2011. <www.sciencedaily.com/releases/2011/02/110203141818.htm>.
University of Oxford. (2011, February 8). Atom-thick sheets unlock future technologies. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2011/02/110203141818.htm
University of Oxford. "Atom-thick sheets unlock future technologies." ScienceDaily. www.sciencedaily.com/releases/2011/02/110203141818.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins