Featured Research

from universities, journals, and other organizations

Fingerprint makes computer chips counterfeit-proof

Date:
February 8, 2011
Source:
Fraunhofer-Gesellschaft
Summary:
Product counterfeiters are increasingly targeting computer chips and electronic components, with attacks on hardware modules becoming commonplace. Tailor-made security technology utilizes a component's individual material properties to generate a digital key. This provides components with an identity -- since their unique structure cannot be copied.

Digital fingerprint makes chips conterfeit-proof.
Credit: Fraunhofer SIT

Product counterfeiters are increasingly targeting chips and electronic components, with attacks on hardware modules becoming commonplace. Tailor-made security technology utilizes a component's individual material properties to generate a digital key. This provides components with an identity -- since their unique structure cannot be copied.

Fraunhofer researchers will be presenting a prototype at the embedded world Exhibition & Conference in Nuremberg from March 1 to 3.

Product piracy long ago ceased to be limited exclusively to the consumer goods sector. Industry, too, is increasingly having to combat this problem. Cheap fakes cost business dear: The German mechanical and plant engineering sector alone lost 6.4 billion euros of revenue in 2010, according to a survey by the German Engineering Federation (VDMA). Sales losses aside, low-quality counterfeits can also damage a company's brand image. Worse, they can even put people's lives at risk if they are used in areas where safety is paramount, such as automobile or aircraft manufacture. Patent rights or organizational provisions such as confidentiality agreements are no longer sufficient to prevent product piracy. Today's commercially available anti-piracy technology provides a degree of protection, but it no longer constitutes an insurmountable obstacle for the product counterfeiters: Criminals are using scanning electron microscopes, focused ion beams or laser bolts to intercept security keys -- and adopting increasingly sophisticated methods.

No two chips are the same

At embedded world, researchers from the Fraunhofer Institute for Secure Information Technology SIT will be demonstrating how electronic components or chips can be made counterfeit-proof using physical unclonable functions (PUFs). "Every component has a kind of individual fingerprint since small differences inevitably arise between components during production," explains Dominik Merli, a scientist at Fraunhofer SIT in Garching near Munich. Printed circuits, for instance, end up with minimal variations in thickness or length during the manufacturing process. While these variations do not affect functionality, they can be used to generate a unique code.

Invasive attacks destroy the structure

A PUF module is integrated directly into a chip -- a setup that is feasible not only in a large number of programmable semiconductors known as FPGAs (field programmable gate arrays) but equally in hardware components such as microchips and smartcards. "At its heart is a measuring circuit, for instance a ring oscillator. This oscillator generates a characteristic clock signal which allows the chip's precise material properties to be determined. Special electronic circuits then read these measurement data and generate the component-specific key from the data," explains Merli. Unlike conventional cryptographic processes, the secret key is not stored on the hardware but is regenerated as and when required. Since the code relates directly to the system properties at any given point in time, it is virtually impossible to extract and clone it. Invasive attacks on the chip would alter physical parameters, thus distorting or destroying the unique structure.

The Garching-based researchers have already developed two prototypes: A butterfly PUF and a ring oscillator PUF. At present, these modules are being optimized for practical applications. The experts will be at embedded world in Nuremberg (hall 11, stand 203) from March 1-3 to showcase FPGA boards that can generate an individual cryptographic key using a ring oscillator PUF. These allow attack-resistant security solutions to be rolled out in embedded systems.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Fingerprint makes computer chips counterfeit-proof." ScienceDaily. ScienceDaily, 8 February 2011. <www.sciencedaily.com/releases/2011/02/110208091719.htm>.
Fraunhofer-Gesellschaft. (2011, February 8). Fingerprint makes computer chips counterfeit-proof. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2011/02/110208091719.htm
Fraunhofer-Gesellschaft. "Fingerprint makes computer chips counterfeit-proof." ScienceDaily. www.sciencedaily.com/releases/2011/02/110208091719.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins