Featured Research

from universities, journals, and other organizations

Virus-mimicking nanoparticles can stimulate long-lasting immunity

Date:
February 24, 2011
Source:
Emory University
Summary:
Scientists have designed tiny nanoparticles that resemble viruses in size and immunological composition and that induce lifelong immunity in mice. They designed the particles to mimic the immune-stimulating effects of one of the most successful vaccines ever developed -- the yellow fever vaccine. The particles, made of biodegradable polymers, have components that activate two different parts of the innate immune system and can be used interchangeably with material from many different bacteria or viruses.

Researchers have designed tiny nanoparticles that resemble viruses in size and immunological composition and that induce lifelong immunity in mice. Blue = resting B cells. Red = activated B cells that are being "trained" to produce high-quality antibodies. Green = specialized antibody-producing cells.
Credit: Image courtesy of Emory University

Vaccine scientists say their "Holy Grail" is to stimulate immunity that lasts for a lifetime. Live viral vaccines such as the smallpox or yellow fever vaccines provide immune protection that lasts several decades, but despite their success, scientists have remained in the dark as to how they induce such long lasting immunity.

Scientists at the Emory Vaccine Center have designed tiny nanoparticles that resemble viruses in size and immunological composition and that induce lifelong immunity in mice. They designed the particles to mimic the immune‑stimulating effects of one of the most successful vaccines ever developed -- the yellow fever vaccine. The particles, made of biodegradable polymers, have components that activate two different parts of the innate immune system and can be used interchangeably with material from many different bacteria or viruses.

The results are described in this week's issue of Nature.

"These results address a long‑standing puzzle in vaccinology: how do successful vaccines induce long-lasting immunity?" says senior author Bali Pulendran, PhD, Charles Howard Candler professor of pathology and laboratory medicine at Emory University School of Medicine and a researcher at Yerkes National Primate Research Center.

"These particles could provide an instant way to stretch scarce supplies when access to viral material is limited, such as pandemic flu or during an emerging infection. In addition, there are many diseases, such as HIV, malaria, tuberculosis and dengue, that still lack effective vaccines, where we anticipate that this type of immunity enhancer could play a role."

One injection of the live viral yellow fever vaccine, developed in the 1930s by Nobel Prize winner Max Theiler, can protect against disease‑causing forms of the virus for decades. Pulendran and his colleagues have been investigating how humans respond to the yellow fever vaccine, in the hopes of imitating it.

Several years ago, they established that the yellow fever vaccine stimulated multiple Toll‑like receptors (TLRs) in the innate immune system. TLRs are present in insects as well as mammals, birds and fish. They are molecules expressed by cells that can sense bits of viruses, bacteria and parasites and can activate the immune system. Pulendran's group demonstrated that the immune system sensed the yellow fever vaccine via multiple TLRs, and that this was required for the immunity induced by the vaccine.

"TLRs are like the sixth sense in our bodies, because they have an exquisite capacity to sense viruses and bacteria, and convey this information to stimulate the immune response," Pulendran says. "We found that to get the best immune response, you need to hit more than one kind of Toll‑like receptor. Our aim was to create a synthetic particle that accomplishes this task."

Emory postdoctoral fellow Sudhir Pai Kasturi, PhD, created tiny particles studded with molecules thatturn on Toll‑like receptors. He worked with colleague Niren Murthy, PhD, associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

"We are very excited about building on this platform to design improved vaccines for existing and emerging infectious diseases" says Kasturi, the primary author working in Pulendran's lab at the Emory Vaccine Center. One of the particles' components is MPL (monophosphoryl lipid A), a component of bacterial cell walls, and the other is imiquimod, a chemical that mimics the effects of viral RNA. The particles are made of PLGA -- poly(lactic acid)‑co‑(glycolic acid) -- a synthetic polymer used for biodegradable grafts and sutures.

All three components are FDA‑approved for human use individually. For several decades, the only FDA‑approved vaccine additive was alum, until a cervical cancer vaccine containing MPL was approved in 2009. Because of immune system differences between mice and monkeys, the scientists replaced imiquimod with the related chemical resiquimod for monkey experiments.

In mice, the particles can stimulate production of antibodies to proteins from flu virus or anthrax bacteria several orders of magnitude more effectively than alum, the authors found. In addition, the immune cells persist in lymph nodes for at least 18months, almost the lifetime of a mouse. In experiments with monkeys, nanoparticles with viral protein could induce robust responses greater than five times the response induced by a dose of the same viral protein given by itself, without the nanoparticles.

The research was supported by the National Institutes of Health and the Bill and Melinda Gates Foundation.


Story Source:

The above story is based on materials provided by Emory University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sudhir Pai Kasturi, Ioanna Skountzou, Randy A. Albrecht, Dimitrios Koutsonanos, Tang Hua, Helder I. Nakaya, Rajesh Ravindran, Shelley Stewart, Munir Alam, Marcin Kwissa, Francois Villinger, Niren Murthy, John Steel, Joshy Jacob, Robert J. Hogan, Adolfo Garcνa-Sastre, Richard Compans, Bali Pulendran. Programming the magnitude and persistence of antibody responses with innate immunity. Nature, 2011; 470 (7335): 543 DOI: 10.1038/nature09737

Cite This Page:

Emory University. "Virus-mimicking nanoparticles can stimulate long-lasting immunity." ScienceDaily. ScienceDaily, 24 February 2011. <www.sciencedaily.com/releases/2011/02/110223133846.htm>.
Emory University. (2011, February 24). Virus-mimicking nanoparticles can stimulate long-lasting immunity. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2011/02/110223133846.htm
Emory University. "Virus-mimicking nanoparticles can stimulate long-lasting immunity." ScienceDaily. www.sciencedaily.com/releases/2011/02/110223133846.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) — Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) — A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) — The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) — A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins