Featured Research

from universities, journals, and other organizations

Immune molecule regulates brain connections

Date:
February 28, 2011
Source:
University of California - Davis
Summary:
The number of connections between nerve cells in the brain can be regulated by an immune system molecule, according to a new study.

The number of connections between nerve cells in the brain can be regulated by an immune system molecule, according to a new study from UC Davis. The research, published Feb. 27 in the journal Nature Neuroscience, reveals a potential link between immunity, infectious disease and conditions such as schizophrenia or autism.

Related Articles


Schizophrenia, autism and other disorders are associated with changes in connectivity in the brain, said Kimberley McAllister, associate professor in the Center for Neuroscience and Departments of Neurology and Neurobiology, Physiology and Behavior at UC Davis. Those changes affect the ability of the brain to process information correctly.

"Certain immune genes and immune dysregulation have also been associated with autism and schizophrenia, and the immune molecules that we study in brain development could be a pathway that contributes to that altered connectivity," McAllister said.

The study does not show a direct link between immune responses and autism, but rather reveals a molecular pathway through which a peripheral immune response or particular genetic profile could alter early brain development, McAllister said.

The researchers looked at a protein called Major Histocompatibility Complex type 1 (MHC type I). In both rodents and humans, these proteins vary between individuals, and allow the immune system to distinguish between 'self' and 'non-self.' They play a role, for example, in rejecting transplanted organs and in defending against cancer and virus infections.

In this and another recently published study, McAllister's group found that MHC type I molecules are present on young brain cells during early postnatal development. To test their function, they studied mice lacking MHC type I on the surface of neurons, as well as isolated neurons from mice and rats with altered levels of MHC type I. They found that when the density of these molecules on the surface of a brain cell goes up, the number of connections, or synapses, it has with neighboring brain cells goes down. The reverse was also true: decreased MHC expression increased synaptic connections.

"The effect on synapse density was mediated through MHC type I proteins," McAllister said.

"But these immune proteins don't just regulate synapse density, they also determine the balance of excitation and inhibition on young neurons -- a property critical for information processing and plasticity in young brains."

Expression of MHCI on neurons was itself regulated by neural activity, the team found, and MHCI mediated the ability of neural activity to alter synaptic connections.

About 10 years ago, other researchers discovered that MHC type I is involved in elimination of connections during a critical period of late postnatal brain development.

"We have now found that there is another role for MHC type I in establishing connections during early postnatal development of the brain," McAllister said.

The other coauthors on the paper were: former graduate student Marian Glynn, graduate students Bradford Elmer and Paula Garay, researcher Xiao-Bo Liu, postdoctoral researcher Leigh Needleman, and research associate Faten El-Sabeawy.

Funding for the work was provided by grants from several foundations, including Cure Autism Now, the John Merck Fund, the March of Dimes, and the National Alliance for Research on Schizophrenia and Depression; a pilot grant from the UC Davis MIND Institute, and the National Institute for Neurological Disorders and Stroke.


Story Source:

The above story is based on materials provided by University of California - Davis. Note: Materials may be edited for content and length.


Journal Reference:

  1. Marian W Glynn, Bradford M Elmer, Paula A Garay, Xiao-Bo Liu, Leigh A Needleman, Faten El-Sabeawy & A Kimberley McAllister. MHCI negatively regulates synapse density during the establishment of cortical connections. Nature Neuroscience, 27 February 2011 DOI: 10.1038/nn.2764

Cite This Page:

University of California - Davis. "Immune molecule regulates brain connections." ScienceDaily. ScienceDaily, 28 February 2011. <www.sciencedaily.com/releases/2011/02/110227130941.htm>.
University of California - Davis. (2011, February 28). Immune molecule regulates brain connections. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2011/02/110227130941.htm
University of California - Davis. "Immune molecule regulates brain connections." ScienceDaily. www.sciencedaily.com/releases/2011/02/110227130941.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com
Madagascar Working to Contain Plague Outbreak

Madagascar Working to Contain Plague Outbreak

AFP (Nov. 24, 2014) Madagascar said Monday it is trying to contain an outbreak of plague -- similar to the Black Death that swept Medieval Europe -- that has killed 40 people and is spreading to the capital Antananarivo. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins