Featured Research

from universities, journals, and other organizations

'A little off the top' helps map cells with submicrometer resolution

Date:
March 3, 2011
Source:
National Institute of Standards and Technology (NIST)
Summary:
In an effort to identify the early-onset, subtle chemical changes occurring in a cell heading toward malignancy, researchers have developed a technique that slices off the top of a cell and makes the structures accessible to spectroscopic examination of their chemical "signatures."

This artist's illustration shows a HeLa cell with its top already "milled" off being probed by a secondary ion mass spectrometry (SIMS) beam. Molecules from three sections of the cell -- the membrane, the cytoplasm and the nucleus -- are seen ejecting from the surface in response. The spectra from these molecules are used to map the cell sections from which they originate.
Credit: Donald Bliss, National Library of Medicine, National Institutes of Health

To determine if a tissue biopsy reveals the presence of cancer, a histologist often screens for cells with an abnormal appearance or a specific visible trait such as a larger-than-usual nucleus. However, by the time a cancer is physically noticeable, the disease may be in its later stages and more difficult to treat. In an effort to identify the earlier-onset, more subtle chemical changes occurring in a cell heading toward malignancy, researchers at the National Institute of Standards and Technology (NIST) and the National Cancer Institute (NCI) have developed a technique that slices off the top of a cell and makes the structures accessible to spectroscopic examination of their chemical "signature."

Related Articles


Secondary-ion mass spectrometry (SIMS) is a laboratory method developed in the 1960s to define and map the chemicals making up a substance or structure. An ion beam is shot at the surface of a sample, knocking chemical species off the target area that can then be identified by a mass spectrometer. The resulting spectra, in turn, can be used to create a chemical map of the sample.

To date, using SIMS imaging to map mammalian cells has yielded only modest success. To get to the interesting stuff inside the cell, the beam must first blast away the outer cell membrane. Like using a pickax to uncover a fossil, the beam often digs unevenly or too deeply and can damage or destroy the complex molecules and structures inside. The NIST/NCI team tried something more surgical. They first freeze-dried the cell in a manner that prevented its membrane from rupturing and then gently milled the top off the cell with a more powerful, more precisely controlled focused ion beam (FIB) that can skim across the cell at a specified depth. The interior of the cell is left exposed and as close to its natural state as possible for the SIMS beam. "In effect, we get a new, extremely data-rich surface for analysis," says team leader Christopher Szakal.

In a recently published proof-of-concept experiment, the NIST/NCI researchers applied their method to samples from the HeLa immortal human cancer cell line. Specific chemical signals were mapped across the region sliced open by the FIB, yielding images of the cell structures they define at resolutions better than a micrometer (millionth of a meter). For example, spectral maps of phospholipids were used to produce two-dimensional views of cell membranes.

The next step, Szakal says, is to show that the FIB can cleanly slice more than just the top layer off of a cell. "If we can use the FIB-SIMS method to chemically map successive layers of a cell, we'll be able to get three-dimensional images of the cell's components," he explains.

Additionally, the NIST/NCI team is developing mathematical algorithms to enhance and improve the images produced by its new system. The researchers hope that the technique will eventually enable diagnosticians to spot early changes in cell structure that could indicate a move toward abnormality (such as an enlargement of the nuclear membrane) or detect the initial presence of biomarkers, chemical species that can potentially be used to monitor the growth of specific cancers.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Christopher Szakal, Kedar Narayan, Jing Fu, Jonathan Lefman, Sriram Subramaniam. Compositional Mapping of the Surface and Interior of Mammalian Cells at Submicrometer Resolution. Analytical Chemistry, 2011; 83 (4): 1207 DOI: 10.1021/ac1030607

Cite This Page:

National Institute of Standards and Technology (NIST). "'A little off the top' helps map cells with submicrometer resolution." ScienceDaily. ScienceDaily, 3 March 2011. <www.sciencedaily.com/releases/2011/03/110302121840.htm>.
National Institute of Standards and Technology (NIST). (2011, March 3). 'A little off the top' helps map cells with submicrometer resolution. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2011/03/110302121840.htm
National Institute of Standards and Technology (NIST). "'A little off the top' helps map cells with submicrometer resolution." ScienceDaily. www.sciencedaily.com/releases/2011/03/110302121840.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins