Featured Research

from universities, journals, and other organizations

New system can warn of tsunamis within minutes

Date:
March 4, 2011
Source:
Georgia Institute of Technology
Summary:
Seismologists have developed a new system that could be used to warn future populations of an impending tsunami only minutes after the initial earthquake. The system, known as RTerg, could help reduce the death toll by giving local residents valuable time to move to safer ground.

Seismologists have developed a new system that could be used to warn future populations of an impending tsunami only minutes after the initial earthquake. The system, known as RTerg, could help reduce the death toll by giving local residents valuable time to move to safer ground.

The study by researchers at the Georgia Institute of Technology appears in the March 5 edition of Geophysical Research Letters.

"We developed a system that, in real time, successfully identified the magnitude 7.8 2010 Sumatran earthquake as a rare and destructive tsunami earthquake. Using this system, we could in the future warn local populations, thus minimizing the death toll from tsunamis," said Andrew Newman, assistant professor in the School of Earth and Atmospheric Sciences.

Typically, a large subduction zone earthquake ruptures at a rate near 3 kilometers/second and anywhere from 20 kilometers to 50 kilometers below Earth's surface. Because of the depth, vertical deformation of the crust is horizontally smoothed, causing the size of uplift to remain rather small. When these earthquakes occur in the ocean, the resulting waves may only measure about 20 centimeters high for a magnitude 7.8 event.

Tsunami earthquakes, however, are a rare class of earthquakes that rupture more slowly, at 1-1.5 kilometers /second and propagate up to the sea floor, near the trench. This makes the vertical uplift much larger, resulting in nearby wave heights up to 10- 20 meters in nearby coastal environments. Such is the case of the Sumatran earthquake with reported wave heights of up to 17 meters, causing a death toll of approximately 430 people.

"Because tsunami earthquakes rupture in a shallow environment, we can't simply use a measurement of magnitude to determine which ones will create large waves," said Newman. "When they occur, people often don't feel that they're significant, if they even feel them in the first place, because they seem like they're an order of magnitude smaller than they actually are."

Tsunami earthquakes typically rupture more slowly, last longer and are less efficient at radiating energy, so when RTerg uses its algorithmic tools to find a quake matching these attributes, it sends an alert to the National Oceanic and Atmospheric Administration's Pacific Tsunami Warning Center as well as the United States Geological Survey's National Earthquake Information Center.

Here's how it works. Usually within four minutes, RTerg gets a notification from one of the tsunami warning centers that an earthquake has occurred. This notice gives the system the quake's location, depth and approximate magnitude. If the earthquake is determined to be of magnitude 6.5 or higher, it takes about a minute to request and receive data from around 150 seismic stations around the world. Once it collects this data, it uses its algorithm to run through every second of the rupture and determine the incremental growth of energy and ascertain whether the quake was a tsunami earthquake.

Newman and his team have used seismology readings from previous tsunami earthquakes, such as the one in Nicaragua in 1992 and the one that hit Java in 2006, but the Sumatran event was the first tsunami quake that occurred when RTerg was online in real time. With that quake, the system identified the event as a potential tsunami earthquake after eight and a half minutes, and sent a notification out shortly thereafter. When applied to a production warning system, the tool will be most valuable, since analysts are available 24/7 to evaluate the algorithm results.

"For most tsunami earthquakes, inundation of the coastal environment doesn't occur until about 30-40 minutes after the quake. So we'll have about 20-30 minutes to get our information to an automatic warning system, or to the authorities," said Newman. "This gives us a tangible amount of time to get people out of the way."

Currently, Newman and his team are working to test and implement a technique for RTerg that could shave another minute or more from the warning time. In addition, they are planning to rewrite the algorithm so that it can be used at all U.S. and international warning centers.


Story Source:

The above story is based on materials provided by Georgia Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Newman, A. V., G. Hayes, Y. Wei, and J. Convers. The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation. Geophys. Res. Lett., (in press) DOI: 10.1029/2010GL046498

Cite This Page:

Georgia Institute of Technology. "New system can warn of tsunamis within minutes." ScienceDaily. ScienceDaily, 4 March 2011. <www.sciencedaily.com/releases/2011/03/110304115007.htm>.
Georgia Institute of Technology. (2011, March 4). New system can warn of tsunamis within minutes. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2011/03/110304115007.htm
Georgia Institute of Technology. "New system can warn of tsunamis within minutes." ScienceDaily. www.sciencedaily.com/releases/2011/03/110304115007.htm (accessed September 16, 2014).

Share This



More Earth & Climate News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Isolated N. Korea Asks For International Help With Volcano

Isolated N. Korea Asks For International Help With Volcano

Newsy (Sep. 16, 2014) Mount Paektu volcano in North Korea is showing signs of life and there's not much known about it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins