Featured Research

from universities, journals, and other organizations

A new stem cell enters the mix: Induced conditional self-renewing progenitor cells

Date:
March 9, 2011
Source:
Sanford-Burnham Medical Research Institute
Summary:
Generated from progenitor cells, ICSP cells are easier to produce than iPS cells and show therapeutic benefit in a rodent stroke model.

In the past few months, a slew of papers have indicated that the therapeutic potential of a promising type of stem cell, called induced pluripotent stem (iPS) cells, might be limited by reprogramming errors and genomic instability. iPS cells are engineered by reprogramming fully differentiated adult cells, often skin cells, back to a primitive, embryonic-like state. Given these problems, a team of researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham), Chung-Ang University in Korea, the University of British Columbia, Harvard Medical School and elsewhere wondered if there might be a better way to regenerate lost tissue to treat conditions like heart disease and stroke.

Writing March 4 in the Proceedings of the National Academy of Sciences, they outline a method to obtain a new kind of stem cell they call "induced conditional self-renewing progenitor (ICSP) cells."

With the addition of a single gene, the team instructed neural progenitor cells -- a type of brain cell that can generate other types of brain cells -- to self-renew in a laboratory dish. Once they had enough, the researchers moved the ICSP cells to a rodent stroke model, where the cells stopped proliferating, started differentiating and improved brain function.

"It's amazingly cool that we can dial adult cells all the way back to embryonic-like stem cells, but there are a lot of issues that still need to be addressed before iPS cells can be used to treat patients," said Evan Y. Snyder, M.D., Ph.D., director of Sanford-Burnham's Stem Cells and Regenerative Biology Program and corresponding author of the study. "So we wondered… if we just want to treat a brain disease, do we really have to start with a skin cell, which has nothing to do with the brain, and push it all the way back to the point that it has potential to become anything? In this study, we developed ICSP cells using a cell from the organ we're already interested in -- the nervous system, in this case -- and pushed it back just enough so it continued to divide, giving us a quantity that we were able to apply efficiently, safely and effectively to treat stroke injury in a rodent model."

Here's how ICSP cells work. Researchers use a viral vector to introduce a gene called v-Myc into neural progenitor cells. Myc, one of four standard genes already used to generate iPS cells, triggers self-renewal, guiding cells through the replication process. Scientists are sometimes cautious when it comes to adding genes like Myc -- if cells keep dividing after transplantation in a patient, cancer could develop -- but v-Myc is known to be safer than other flavors of Myc. What's more, the v-Myc used here is conditionally expressed. This means that ICSP cells can only produce v-Myc when the researchers add a compound called tetracycline to laboratory cultures. When tetracycline is removed, the cells cease dividing and start differentiating. Then, once transplanted into to an animal model, ICSP cells are no longer exposed to tetracycline and take their growth and differentiation cues from their new environment.

In this study, ICSP cells differentiated into active neurons and other brain cell types with therapeutic payoff for an adult rat model of intracerebral hemorrhagic stroke -- the rodents show improved behavioral performance. Although the long-term genomic stability of ICSP cells remains to be seen, no adverse effects have arisen over five months of observation. The team envisions that this ICSP approach will also extend to progenitor cells obtained from other organs, such as heart, pancreas, or muscle, potentially accelerating the use of stem cell therapies for a broad range of diseases.

This study was funded by the Korean Ministry of Health and Welfare, the Canadian Myelin Research Initiative, Sanford Children's Health Research Center at Sanford-Burnham, the California Institute for Regenerative Medicine (CIRM), the A-T Children's Project and the Nancy Lurie Marks Family Foundation.

Original paper Kim KS, Lee HJ, Jeong HS, Li J, Teng YD, Sidman RL, Snyder EY, Kim SU. Self-renewal induced efficiently, safely, and effective therapeutically with one regulatable gene in a human somatic progenitor cell. Proceedings of the National Academy of Sciences. March 4, 2011.


Story Source:

The above story is based on materials provided by Sanford-Burnham Medical Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. S. Kim, H. J. Lee, H. S. Jeong, J. Li, Y. D. Teng, R. L. Sidman, E. Y. Snyder, S. U. Kim. Self-renewal induced efficiently, safely, and effective therapeutically with one regulatable gene in a human somatic progenitor cell. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1019743108

Cite This Page:

Sanford-Burnham Medical Research Institute. "A new stem cell enters the mix: Induced conditional self-renewing progenitor cells." ScienceDaily. ScienceDaily, 9 March 2011. <www.sciencedaily.com/releases/2011/03/110307101301.htm>.
Sanford-Burnham Medical Research Institute. (2011, March 9). A new stem cell enters the mix: Induced conditional self-renewing progenitor cells. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2011/03/110307101301.htm
Sanford-Burnham Medical Research Institute. "A new stem cell enters the mix: Induced conditional self-renewing progenitor cells." ScienceDaily. www.sciencedaily.com/releases/2011/03/110307101301.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Doctors Fear They're Losing Battle Against Ebola

Doctors Fear They're Losing Battle Against Ebola

AP (Sep. 2, 2014) As a third American missionary is confirmed to have contracted Ebola in Liberia, doctors on the ground in West Africa fear they're losing the battle against the outbreak. (Sept. 2) Video provided by AP
Powered by NewsLook.com
Tech Giants Bet on 3D Headsets for Gaming, Healthcare

Tech Giants Bet on 3D Headsets for Gaming, Healthcare

AFP (Sep. 2, 2014) When Facebook acquired the virtual reality hardware developer Oculus VR in March for $2 billion, CEO Mark Zuckerberg hailed the firm's technology as "a new communication platform." Duration: 02:24 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins