Featured Research

from universities, journals, and other organizations

High-tech concrete technology has a famous past

Date:
March 16, 2011
Source:
National Institute of Standards and Technology (NIST)
Summary:
Almost 1,900 years ago, the Romans built what continues to be the world's largest unreinforced solid concrete dome in the world-the Pantheon. The secret is in the light-weight concrete used to build the dome and a process called internal curing. A new paper reviews the status of modern improvements on this ancient material.

X-ray microtomograph (left) shows pores (blue) that remain within lightweight aggregates (LWAs) after water has migrated from the pre-wetted materials during the first day of hydration. In the two-dimensional image (right), the emptied pores are superimposed over the original microstructure (hydrating cement paste is white, sand is light grey, and LWA is dark grey), illustrating the detailed pore structure of LWA particles.
Credit: NIST

In the business of concrete making, what's old -- even ancient -- is new again.

Almost 1,900 years ago, the Romans built what continues to be the world's largest unreinforced solid concrete dome in the world -- the Pantheon. The secret, probably unknown to the Emperor Hadrian's engineers at the time, was that the lightweight concrete used to build the dome had set and hardened from the inside out. This internal curing process enhanced the material's strength, durability, resistance to cracking, and other properties so that the Pantheon continues to be used for special events to this day.

But it is only within the last decade or so that internally cured concrete has begun to have an impact on modern world infrastructure. Increasingly, internally cured concrete is being used in the construction of bridge decks, pavements, parking structures, water tanks, and railway yards, according to a review of the current status of the new (or old) concrete technology just published by the National Institute of Standards and Technology (NIST).

The virtues of internally cured concrete stem from substituting light-weight, pre-wetted absorbent materials for some of the sand and/or coarse aggregates (stones) that are mixed with cement to make conventional concrete. Dispersed throughout the mixture, the water-filled lightweight aggregates serve as reservoirs that release water on an as-needed basis to nearby hydrating cement particles.

According to one study cited in the review, bridge decks made with internally cured, high-performance concrete were estimated to have a service life of 63 years, as compared with 22 years for conventional concrete and 40 years for high-performance concrete without internal curing.

"As with many new technologies, the path from research to practice has been a slow one, but as of 2010, hundreds of thousands of cubic meters" of the lighter and more durable material have been successfully used in U.S. construction, write the report's co-authors, NIST chemical engineer Dale Bentz and Jason Weiss, Purdue University civil engineering professor.

Compared with conventional varieties, internally cured concrete increases the cost of a project by 10 to 12 percent, Bentz and Weiss estimate on the basis of bridge-building projects in New York and Indiana. The increased front-end cost, they write, must be evaluated against the reduced risk of cracking, better protection against salt damage, and other improved properties that "should contribute to a more durable structure that has a longer life and lower life-cycle costs," they write. "Further, this could have substantial benefits in a reduced disruption to the traveling public, generally producing a more sustainable solution."

The 82-page report summarizes the current practice and theory of internal curing, reviews project experiences and material performance in the field, and describes opportunities for research that could lead to enhancements in the material.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. D. P. Bentz, W. J. Weiss. Internal Curing: A 2010 State-of-the-Art Review. NIST Interagency/Internal Report, 2011; 7765 [link]

Cite This Page:

National Institute of Standards and Technology (NIST). "High-tech concrete technology has a famous past." ScienceDaily. ScienceDaily, 16 March 2011. <www.sciencedaily.com/releases/2011/03/110316152951.htm>.
National Institute of Standards and Technology (NIST). (2011, March 16). High-tech concrete technology has a famous past. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2011/03/110316152951.htm
National Institute of Standards and Technology (NIST). "High-tech concrete technology has a famous past." ScienceDaily. www.sciencedaily.com/releases/2011/03/110316152951.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins