Featured Research

from universities, journals, and other organizations

Fault-finding coral reefs can predict the site of coming earthquakes

Date:
March 21, 2011
Source:
American Friends of Tel Aviv University
Summary:
Scientists are surveying "mass wasting," a unique geological phenomenon of the Red Sea, to identify active fault-line activity along fossil coral reefs and sediment levels. They say that their research is applicable to any coastal land areas, such as Japan and the west coast of the US.

This is a 3-D illustration of the Gulf of Aqaba Sea floor and surrounding mountains.
Credit: AFTAU

In the wake of the devastating loss of life in Japan, the urgent question is where the next big earthquake will hit. To answer it, geologist Prof. Zvi Ben-Avraham and his doctoral student Gal Hartman of Tel Aviv University's Department of Physics and Planetary Sciences in the Raymond and Beverly Sackler Faculty of Exact Sciences are examining coral reefs and submarine canyons to detect earthquake fault zones.

Working with an international team of Israelis, Americans and Jordanians, Prof. Ben-Avraham and his team are developing a new method to determine what areas in a fault zone region are most at risk. Using a marine vessel, he and his colleagues are surveying a unique geological phenomenon of the Red Sea, near the coastal cities of Eilat and Aqaba -- but their research could be applied anywhere, including Japan and the west coast of the U.S.

Recently published in the journal Geo-Marine Letters, the research details a "mass wasting" of large detached blocks and collapsed walls of submarine canyons along the gulf region of the Red Sea. They believe the geological changes were triggered by earthquake activity.

What's next for San Andreas?

The team has created the first underwater map of the Red Sea floor at the head of the Gulf of Aqaba, and more importantly, identified deformations on the sea floor indicating fault-line activity. They not only pinpointed the known fault lines along the Syrian-African rift, but located new ones that city engineers in Israel and Jordan should be alert to.

"Studying fossil coral reefs and how they've split apart over time, we've developed a new way to survey active faults offshore by looking at the movement of sediment and fossil structures across them," says Hartman. "What we can't say is exactly when the next major earthquake will hit. But we can tell city engineers where the most likely epicenter will be." According to Hartman, the tourist area in the city of Eilat is particularly vulnerable.

While geologists have been tracking underwater faults for decades, the new research uniquely tracks lateral movements across a fault line (a "transform fault") and how they impact the sediment around them. This is a significant predictive tool for studying the San Andreas Fault in California as well, says Hartman.

The research is supported by a USAID grant through the Middle East Regional Cooperation (MERC) program.

Marching orders for city engineers

Aboard a marine vessel that traversed the waters of Israel and Jordan and peering at depths as deep as 700 meters, the researchers analyzed the structure of the seabed and discovered active submarine canyons, mass wasting, landslides, and sediment slumps related to tectonic processes and earthquake activity.

"There are several indicators of seismic activity. The most significant is the location of the fault. Looking at and beneath the seafloor, we saw that the faults deform the upper sediments. The faults of the Red Sea are active. We managed to find some other faults too and now know just how many active faults are in the region. This should help make authorities aware of where the next big earthquake will strike," says Hartman.

What made their study particularly unique is that they used the offset along linear structures, of fossil coral fringing-reefs to measure what they call "lateral slip across active faults." With this knowledge, researchers were able to calculate total slip and slip-rates and how active the fault has become.

"We can now identify high-risk locations with more certainty, and this is a boon to city planners. It's just a matter of time before we'll need to test how well cities will withstand the force of the next earthquake. It's a matter of proper planning," concludes Hartman.


Story Source:

The above story is based on materials provided by American Friends of Tel Aviv University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gideon Tibor, Tina M. Niemi, Zvi Ben-Avraham, Abdallah Al-Zoubi, Ronnie A. Sade, John K. Hall, Gal Hartman, Emad Akawi, Abdelrahmem Abueladas, Rami Al-Ruzouq. Active tectonic morphology and submarine deformation of the northern Gulf of Eilat/Aqaba from analyses of multibeam data. Geo-Marine Letters, 2010; 30 (6): 561 DOI: 10.1007/s00367-010-0194-y

Cite This Page:

American Friends of Tel Aviv University. "Fault-finding coral reefs can predict the site of coming earthquakes." ScienceDaily. ScienceDaily, 21 March 2011. <www.sciencedaily.com/releases/2011/03/110321134615.htm>.
American Friends of Tel Aviv University. (2011, March 21). Fault-finding coral reefs can predict the site of coming earthquakes. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2011/03/110321134615.htm
American Friends of Tel Aviv University. "Fault-finding coral reefs can predict the site of coming earthquakes." ScienceDaily. www.sciencedaily.com/releases/2011/03/110321134615.htm (accessed October 20, 2014).

Share This



More Earth & Climate News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
White Rhino's Death In Kenya Means Just 6 Are Left

White Rhino's Death In Kenya Means Just 6 Are Left

Newsy (Oct. 20, 2014) Suni, a rare northern white rhino at Ol Pejeta Conservancy, died Friday. This, as many media have pointed out, leaves people fearing extinction. Video provided by Newsy
Powered by NewsLook.com
Beijing Marathon Runners Brave Hazardous Air Pollution

Beijing Marathon Runners Brave Hazardous Air Pollution

AFP (Oct. 19, 2014) Tens of thousands of runners battled thick smog at the Beijing Marathon on Sunday, with some donning masks as the levels of PM2.5 small pollutant particles soared to 16 times the maximum recommended level. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins