Featured Research

from universities, journals, and other organizations

Chemist develops technique to use light to predict molecular crystal structures

Date:
March 24, 2011
Source:
Syracuse University
Summary:
Chemists have developed a way to use very low frequency light waves to study the weak forces (London dispersion forces) that hold molecules together in a crystal.

Timothy Korter has developed a way to use very low frequency light waves to study the weak forces (London dispersion forces) that hold molecules together in a crystal. This fundamental research could be applied to solve critical problems in drug research, manufacturing and quality control.
Credit: Image courtesy of Syracuse University

A Syracuse University chemist has developed a way to use very low frequency light waves to study the weak forces (London dispersion forces) that hold molecules together in a crystal. This fundamental research could be applied to solve critical problems in drug research, manufacturing and quality control.

The research by Timothy Korter, associate professor of chemistry in SU's College of Arts and Sciences, was the cover article of the March 14 issue of Physical Chemistry Chemical Physics.

"When developing a drug, it is important that we uncover all of the possible ways the molecules can pack together to form a crystal," Korter says. "Changes in the crystal structure can change the way the drug is absorbed and accessed by the body."

One industry example is that of a drug distributed in the form of a gel capsule that crystallized into a solid when left on the shelf for an extended period of time, Korter explains. The medication inside the capsule changed to a form that could not dissolve in the human body, rendering it useless. The drug was removed from shelves. This example shows that it is not always possible for drug companies to identify all the variations of a drug's crystal structure through traditional experimentation, which is time consuming and expensive.

"The question is," Korter says, "can we leverage a better understanding of London and other weak intermolecular forces to predict these changes in crystal structure?"

Korter's lab is one of only a handful of university-based research labs in the world exploring the potential of THz radiation for chemical and pharmaceutical applications. THz light waves exist in the region between infrared radiation and microwaves and offer the unique advantages of being non-harmful to people and able to safely pass through many kinds of materials. THz can also be used to identify the chemical signatures of a wide range of substances. Korter has used THz to identify the chemical of signatures of molecules ranging from improvised explosives and drug components to the building blocks of DNA.

Korter's new research combines THz experiments with new computational models that accurately account for the effects of the London dispersion forces to predict crystal structures of various substances. London forces are one of several types of intermolecular forces that cause molecules to stick together and form solids. Environmental changes (temperature, humidity, light) impact the forces in ways that can cause the crystal structure to change. Korter's research team compares the computer models with the THz experiments and uses the results to refine and improve the theoretical models.

"We have demonstrated how to use THz to directly visualize these chemical interactions," Korter says. "The ultimate goal is to use these THz signatures to develop theoretical models that take into account the role of these weak forces to predict the crystal structures of pharmaceuticals before they are identified through experimentation."

A National Science Foundation Early Career Development (CAREER) Award funds Korter's research.


Story Source:

The above story is based on materials provided by Syracuse University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Matthew D. King, William D. Buchanan, Timothy M. Korter. Application of London-type dispersion corrections to the solid-state density functional theory simulation of the terahertz spectra of crystalline pharmaceuticals. Physical Chemistry Chemical Physics, 2011; 13 (10): 4250 DOI: 10.1039/C0CP01595D

Cite This Page:

Syracuse University. "Chemist develops technique to use light to predict molecular crystal structures." ScienceDaily. ScienceDaily, 24 March 2011. <www.sciencedaily.com/releases/2011/03/110323140142.htm>.
Syracuse University. (2011, March 24). Chemist develops technique to use light to predict molecular crystal structures. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/03/110323140142.htm
Syracuse University. "Chemist develops technique to use light to predict molecular crystal structures." ScienceDaily. www.sciencedaily.com/releases/2011/03/110323140142.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins