Featured Research

from universities, journals, and other organizations

Blood simple circuitry for cyborgs

Date:
March 31, 2011
Source:
Inderscience Publishers
Summary:
Could electronic components made from human blood be the key to creating cyborg interfaces? Circuitry that links human tissues and nerve cells directly to an electronic device, such as a robotic limb or artificial eye might one day be possible thanks to the development of biological components.

Could electronic components made from human blood be the key to creating cyborg interfaces? Circuitry that links human tissues and nerve cells directly to an electronic device, such as a robotic limb or artificial eye might one day be possible thanks to the development of biological components.

Writing in the International Journal of Medical Engineering and Informatics, a team in India describes how a "memristor" can be made using human blood. Memristors were a theoretical electronic component first suggested in 1971 by Berkeley electrical engineer Leon Chua and finally developed in the laboratory by scientists at Hewlett Packard using titanium dioxide in 2008. A memristor is a passive device, like a resistor, with two terminals but rather than having a fixed electrical resistance, its ability to carry a current changes depending on the voltage applied previously; it retains a memory of the current, in other words.

There are countless patents linking the development of memristors to applications in programmable logic circuits, as components of future transistors, in signal processing and in neural networks. S.P. Kosta of the Education Campus Changa in Gujarat and colleagues have now explored the possibility of creating a liquid memristor from human blood. In parallel work they are investigating diodes and capacitors composed of liquid human tissues.

They constructed the laboratory-based biological memristor using a 10 ml test tube filled with human blood held at 37 Celsius into which two electrodes are inserted; appropriate measuring instrumentation was attached. The experimental memristor shows that resistance varies with applied voltage polarity and magnitude and this memory effect is sustained for at least five minutes in the device.

Having demonstrated memristor behavior in blood, the next step was to test that the same behavior would be observed in a device through which blood is flowing. This step was also successful. The next stage will be to develop a micro-channel version of the flow memristor device and to integrate several to carry out particular logic functions. This research is still a long way from an electronic to biological interface, but bodes well for the development of such devices in the future.


Story Source:

The above story is based on materials provided by Inderscience Publishers. Note: Materials may be edited for content and length.


Journal Reference:

  1. S.P. Kosta, Y.P. Kosta, Mukta Bhatele, Y.M. Dubey, Avinash Gaur, Shakti Kosta, Jyoti Gupta, Amit Patel, Bhavin Patel. Human blood liquid memristor. Int. J. Medical Engineering and Informatics, 2011, 3, 16-29

Cite This Page:

Inderscience Publishers. "Blood simple circuitry for cyborgs." ScienceDaily. ScienceDaily, 31 March 2011. <www.sciencedaily.com/releases/2011/03/110330094011.htm>.
Inderscience Publishers. (2011, March 31). Blood simple circuitry for cyborgs. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2011/03/110330094011.htm
Inderscience Publishers. "Blood simple circuitry for cyborgs." ScienceDaily. www.sciencedaily.com/releases/2011/03/110330094011.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Industry's Optimism Shines At New York Auto Show

Industry's Optimism Shines At New York Auto Show

Newsy (Apr. 16, 2014) After seeing auto sales grow last month, there's plenty for the industry to celebrate as it rolls out its newest designs. Video provided by Newsy
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins