Featured Research

from universities, journals, and other organizations

Research into poison curare may lead to medication against tobacco addiction

Date:
March 30, 2011
Source:
Katholieke Universiteit Leuven
Summary:
For the first time, three-dimensional images of protein being paralyzed by the poison curare have been made. Curare has a paralyzing effect and the poison’s active chemical component is used in lung surgery. To date, however, scientists did not know how exactly it works. 3D images have now opened new perspectives for the development of medications against sleeping disorders, tobacco addiction and muscle diseases.

The ion channel reacting to curare – comprising five different sections (pictured here in different colours) that look like the sails of a windmill. The opening in the middle is the pore through which ions flow in or out of the cell. The little globules are tubocurarine, the active chemical component of curare. (The colours indicate various chemical elements. Grey is carbon; red is oxygen and blue is nitrogen.)
Credit: Image courtesy of Katholieke Universiteit Leuven

For the first time, three-dimensional images of protein being paralysed by the poison curare have been made by researchers of the Laboratory for Structural Neurobiology at K.U.Leuven. Curare has a paralysing effect and the poison's active chemical component is used in lung surgery. To date, however, scientists did not know how exactly it works. 3D images have now opened new perspectives for the development of medications against sleeping disorders, tobacco addiction and muscle diseases.

The human cell membrane -- the wall of a living cell -- houses more than 7,000 proteins, but researchers have only managed to identify the structure and function of 27 of these. Ion channels are an important class of membrane proteins that are responsible for communication. The Laboratory for Structural Neurobiology at K.U.Leuven has mapped the three dimensional structure of ion channels.

Professor Ulens, director of the lab, explains what the 3D images of curare mean: "We are locksmiths who examine on an atomic scale how a key -- the poison -- fits the lock of a door -- the ion channel -- and how the key keeps the door locked. Some kinds of poison only fit one lock, but curare is a passkey that can close various ion channels. Using 3D knowledge of the structure of this lock, researchers are able to develop passkey medications for a class of disorders. Or they can develop a specific medication for one disorder, such as tobacco addiction for example, as nicotine affects one specific ion channel.

Ion channels are actually switches. The proteins are shaped like microscopic pores that can open and close. Ions -- charged particles -- flow in or out of the cells through them. Poisons are able to disrupt the communication between cells in the body by blocking ion channels. Curare is the poison the indigenous populations of the Amazon use while hunting. They apply the poison to their arrows in order to paralyse their prey. Tubocurarine -- the active chemical component of curare -- paralyses the muscles and can shut down respiration, resulting in death.

The fact that so little is known about membrane proteins is related to the fatty environment of the cell membrane. In X-ray crystallography -- the standard technique to study proteins -- crystals of proteins are grown in water and then X-rayed in order to expose and examine their structure. Forming crystals of fatty membrane proteins is difficult, however. Professor Ulens explains how his team was able to circumvent this problem: "For the past ten years, researchers were forced to get in through the backdoor: a chemical copy of a section of ion channel. Chemically similar, but not porous. As a result, the formation of crystals was much easier. For the first time, our lab has applied the back entrance to the ion channel, which is sensitive to curare. We now have an image of how this class of ion channels recognises chemical substances."

Ulens hopes to use these results to contribute to the rational development of medications: "In the past, the pharmaceutical industry developed medications by releasing hundreds of thousands of substances into ion channels. If a certain substance caused a reaction, it would be tested on patients -- a system of trial and error. Our research results in the more goal-oriented development of medications: by acquiring insight into the three-dimensional structure of an ion canal, specific medications that bind to the protein can be developed."


Story Source:

The above story is based on materials provided by Katholieke Universiteit Leuven. Note: Materials may be edited for content and length.


Journal Reference:

  1. Marijke Brams, Anshul Pandya, Dmitry Kuzmin, Renι van Elk, Liz Krijnen, Jerrel L. Yakel, Victor Tsetlin, August B. Smit, Chris Ulens. A Structural and Mutagenic Blueprint for Molecular Recognition of Strychnine and d-Tubocurarine by Different Cys-Loop Receptors. PLoS Biology, 2011; 9 (3): e1001034 DOI: 10.1371/journal.pbio.1001034

Cite This Page:

Katholieke Universiteit Leuven. "Research into poison curare may lead to medication against tobacco addiction." ScienceDaily. ScienceDaily, 30 March 2011. <www.sciencedaily.com/releases/2011/03/110330101040.htm>.
Katholieke Universiteit Leuven. (2011, March 30). Research into poison curare may lead to medication against tobacco addiction. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2011/03/110330101040.htm
Katholieke Universiteit Leuven. "Research into poison curare may lead to medication against tobacco addiction." ScienceDaily. www.sciencedaily.com/releases/2011/03/110330101040.htm (accessed October 1, 2014).

Share This



More Health & Medicine News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) — A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) — A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Insertable Cardiac Monitor

Insertable Cardiac Monitor

Ivanhoe (Oct. 1, 2014) — A heart monitor the size of a paperclip that can save your life. The “Reveal Linq” allows a doctor to monitor patients with A-Fib on a continuous basis for up to 3 years! Video provided by Ivanhoe
Powered by NewsLook.com
Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) — Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins