Featured Research

from universities, journals, and other organizations

Bone marrow cells that transform into skin cells could revolutionize approach to wound treatment

Date:
April 5, 2011
Source:
King's College London
Summary:
Researchers have identified specific bone marrow cells that can transform into skin cells to repair damaged skin tissue, according to a new study.

Bone marrow cells (green) can regenerate skin, including the outer epidermal layer (red).
Credit: K. Tamai, Osaka University

Researchers at King's College London and Osaka University in Japan have identified specific bone marrow cells that can transform into skin cells to repair damaged skin tissue, according to a study published in Proceedings of the National Academy of Sciences (PNAS).

Related Articles


The team has uncovered how this process works, providing new insights into the mechanisms behind skin repair. This significant advance has the potential to revolutionise approaches to wound treatment in the future, which could benefit people with chronic wounds such as leg ulcers, pressure sores and burns, as well as genetic skin diseases such as epidermolysis bullosa, which causes painful blisters on the skin.

The current management of chronic wounds in UK patients costs more than a billion pounds every year so this new scientific discovery could lead to significant future cost savings for the NHS.

It was already known that bone marrow may play a role in skin wound healing, but until now it was not known which specific bone marrow cells this involves, how the process is triggered, and how the key cells are recruited to the affected skin area. The team of researchers carried out experiments in mice, specifically looking at the mechanisms involved when skin grafts are used, compared with non-grafted wound healing.

The findings showed that in mice with non-grafted wound healing, very few bone marrow cells travelled to the wound to repair it and they did not make a major contribution to epidermal repair. But in mice where a skin graft was used, a significantly higher number of specific bone marrow-derived cells travelled to the skin graft to heal the area more quickly and build new skin directly from the bone marrow cells.

The research showed that around one in every 450 bone marrow cells has the capacity to transform into skin cells and regenerate the skin.

The team also identified the signal that triggers recruitment of the bone marrow cells to repair skin. Damaged skin can release a distress protein called HMGB1 that can mobilise the cells from bone marrow and direct them to where they are needed.

Mice with skin grafts express high levels of HMGB1 in their blood that can drive the bone marrow repair process. The findings provide new insight into how skin grafts work in medicine -- they do not simply cover wounds, but act as bioreactors that can kick-start regenerative skin repair.

The research also showed that patients with epidermolysis bullosa have high levels of HMGB1 in their blood and that the source here is the roofs of the blisters in their skin. This finding demonstrates that HMGB1 is also important in human skin damage and wound healing responses.

Professor John McGrath, Head of the Genetic Skin Disease Group at King's, recently spent several months working on the project in Osaka. He said: "This work is tremendously exciting for the field of regenerative medicine. The key achievement has been to find out which bone marrow cells can transform into skin cells and repair and maintain the skin as healthy tissue, and to learn how this process happens.

"Understanding how the protein HMGB1 works as a distress signal to summon these particular bone marrow cells is expected to have significant implications for clinical medicine, and could potentially revolutionise the management of wound healing.

"Chronic wounds and tissue injury represent a significant cost to the NHS, not to mention the debilitating effects on peoples' quality of life. Our plan is to see if we can now use this scientific advance to develop more effective treatments to improve tissue repair in skin and perhaps other organs."

Professor McGrath is working together with colleagues at Osaka University to harness the key parts of the HMGB1 protein to create a drug treatment that can augment tissue repair. It is expected that the developed treatment will be tested in animal models in about a year and enter clinical trials shortly afterwards.


Story Source:

The above story is based on materials provided by King's College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. Katsuto Tamai, Takehiko Yamazaki, Takenao Chino, Masaru Ishii, Satoru Otsuru, Yasushi Kikuchi, Shin Iinuma, Kotaro Saga, Keisuke Nimura, Takashi Shimbo, Noriko Umegaki, Ichiro Katayama, Jun-Ichi Miyazaki, Junji Takeda, John A. McGrath, Jouni Uitto, Yasufumi Kaneda. PDGFRα-positive cells in bone marrow are mobilized by high mobility group box 1 (HMGB1) to regenerate injured epithelia. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1016753108

Cite This Page:

King's College London. "Bone marrow cells that transform into skin cells could revolutionize approach to wound treatment." ScienceDaily. ScienceDaily, 5 April 2011. <www.sciencedaily.com/releases/2011/04/110404151345.htm>.
King's College London. (2011, April 5). Bone marrow cells that transform into skin cells could revolutionize approach to wound treatment. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2011/04/110404151345.htm
King's College London. "Bone marrow cells that transform into skin cells could revolutionize approach to wound treatment." ScienceDaily. www.sciencedaily.com/releases/2011/04/110404151345.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins