Featured Research

from universities, journals, and other organizations

Simple chemical cocktail shows first promise for limb re-growth in mammals

Date:
April 8, 2011
Source:
American Chemical Society
Summary:
Move over, newts and salamanders. The mouse may join you as the only animal that can re-grow their own severed limbs. Researchers are reporting that a simple chemical cocktail can coax mouse muscle fibers to become the kinds of cells found in the first stages of a regenerating limb. Their study is the first demonstration that mammal muscle can be turned into the biological raw material for a new limb.

Newt. Just as injured newts can sprout new limbs, a simple chemical cocktail shows promise for limb re-growth in mammals. It nudges mouse cells on a path toward regeneration.
Credit: iStockphoto/Andrea Gingerich

Move over, newts and salamanders. The mouse may join you as the only animal that can re-grow their own severed limbs. Researchers are reporting that a simple chemical cocktail can coax mouse muscle fibers to become the kinds of cells found in the first stages of a regenerating limb.

Related Articles


Their study, the first demonstration that mammal muscle can be turned into the biological raw material for a new limb, appears in the journal ACS Chemical Biology.

Darren R. Williams and Da-Woon Jung say their "relatively simple, gentle, and reversible" methods for creating the early stages of limb regeneration in mouse cells "have implications for both regenerative medicine and stem cell biology." In the future, they suggest, the chemicals they use could speed wound healing by providing new cells at the injured site before the wound closes or becomes infected. Their methods might also shed light on new ways to switch adult cells into the all-purpose, so-called "pluripotent," stem cells with the potential for growing into any type of tissue in the body.

The scientists describe the chemical cocktail that they developed and used to turn mouse muscle fibers into muscle cells. Williams and Jung then converted the muscle cells turned into fat and bone cells. Those transformations were remarkably similar to the initial processes that occur in the tissue of newts and salamanders that is starting to regrow severed limbs.


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Journal Reference:

  1. Da-Woon Jung, Darren R. Williams. Novel Chemically Defined Approach To Produce Multipotent Cells from Terminally Differentiated Tissue Syncytia. ACS Chemical Biology, 2011; 110228124223097 DOI: 10.1021/cb2000154

Cite This Page:

American Chemical Society. "Simple chemical cocktail shows first promise for limb re-growth in mammals." ScienceDaily. ScienceDaily, 8 April 2011. <www.sciencedaily.com/releases/2011/04/110406122207.htm>.
American Chemical Society. (2011, April 8). Simple chemical cocktail shows first promise for limb re-growth in mammals. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2011/04/110406122207.htm
American Chemical Society. "Simple chemical cocktail shows first promise for limb re-growth in mammals." ScienceDaily. www.sciencedaily.com/releases/2011/04/110406122207.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins