Featured Research

from universities, journals, and other organizations

Physicists create clouds of impenetrable gases that bounce off each other

Date:
April 14, 2011
Source:
Massachusetts Institute of Technology
Summary:
When one cloud of gas meets another, they normally pass right through each other. But now, physicists have created clouds of ultracold gases that bounce off each other like bowling balls, even though they are a million times thinner than air -- the first time that such impenetrable gases have been observed. While this experiment involved clouds of lithium atoms, cooled to near absolute zero, the findings could also help explain the behavior of similar systems such as neutron stars, high-temperature superconductors, and quark-gluon plasma, the hot soup of elementary particles that formed immediately after the Big Bang.

Two gas clouds (one red and one blue), each a million times thinner than air, are seen to completely repel each other under the influence of strong, quantum-mechanical interactions. Such gas clouds can model matter under extreme conditions, such as neutron stars or the quark-gluon plasma of the early universe.
Credit: Image by Martin Zwierlein, courtesy of MIT News

When one cloud of gas meets another, they normally pass right through each other. But now, MIT physicists have created clouds of ultracold gases that bounce off each other like bowling balls, even though they are a million times thinner than air -- the first time that such impenetrable gases have been observed.

While this experiment involved clouds of lithium atoms, cooled to near absolute zero, the findings could also help explain the behavior of similar systems such as neutron stars, high-temperature superconductors, and quark-gluon plasma, the hot soup of elementary particles that formed immediately after the Big Bang. A paper describing the work will appear in the April 14 issue of Nature.

The researchers, led by MIT assistant professor of physics Martin Zwierlein, carried out their experiment with an isotope of lithium that belongs to a class of particles called fermions. All building blocks of matter -- electrons, protons, neutrons and quarks -- are fermions.

Different states of fermionic matter are distinguished by their mobility. For example, electrons can be mobile, as in a metal; immobile, as in an insulator; or flow without resistance, as in a superconductor. However, for many types of material, including high-temperature superconductors, it is not known what circumstances induce fermions to form a given state of matter. This is especially true of materials with strongly interacting fermions, meaning they are more likely to collide with each other (also called scattering).

In this study, the researchers set out to model strongly interacting systems, using lithium gas atoms to stand in for electrons. By tuning the lithium atoms' energy states with a magnetic field, they made the atoms interact with each other as strongly as the laws of nature allow, meaning that they scatter every time they encounter another atom.

To eliminate any effects of heat energy, the researchers cooled the gas to about 50 billionths of one Kelvin, close to absolute zero (-273 degrees Celsius). They used magnetic forces to separate the gas into two clouds, labeled "spin up" and "spin down, then made the clouds collide in a trap formed by laser light. Instead of passing through each other, as gases would normally do, the clouds repelled in dramatic fashion.

"When we saw that these ultra dilute puffs of gas bounce off each other, we were completely amazed," says graduate student Ariel Sommer, lead author of the Nature paper.

The gas clouds did eventually diffuse into each other, but in several cases it took an entire second or more -- an extremely long time for events occurring at microscopic scales.

The research, conducted at the MIT-Harvard Center for Ultracold Atoms, is part of a program aimed at using ultracold atoms as easily controllable model systems to study the properties of complex materials, such as high-temperature superconductors and novel magnetic materials that have applications in data storage and improving energy efficiency.

In future work, the researchers plan to confine the lithium gases to two-dimensions, which will allow them to simulate the two-dimensional state in which electrons exist in high-temperature superconductors.

Their work can also be used to model the behavior of other strongly interacting systems, such as high-density neutron stars, which are only a few tens of kilometers in diameter but more massive than our sun.

Another substance that interacts as strongly as the atoms in the ultracold lithium gas clouds created at MIT is quark-gluon plasma, which existed at the universe's formation and has been recreated in particle colliders by colliding atomic nuclei at energies corresponding to a trillion degrees.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Anne Trafton. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ariel Sommer, Mark Ku, Giacomo Roati, Martin W. Zwierlein. Universal spin transport in a strongly interacting Fermi gas. Nature, 2011; 472 (7342): 201 DOI: 10.1038/nature09989

Cite This Page:

Massachusetts Institute of Technology. "Physicists create clouds of impenetrable gases that bounce off each other." ScienceDaily. ScienceDaily, 14 April 2011. <www.sciencedaily.com/releases/2011/04/110413132953.htm>.
Massachusetts Institute of Technology. (2011, April 14). Physicists create clouds of impenetrable gases that bounce off each other. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2011/04/110413132953.htm
Massachusetts Institute of Technology. "Physicists create clouds of impenetrable gases that bounce off each other." ScienceDaily. www.sciencedaily.com/releases/2011/04/110413132953.htm (accessed September 23, 2014).

Share This



More Matter & Energy News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will Living Glue Be A Thing?

Will Living Glue Be A Thing?

Newsy (Sep. 23, 2014) Using proteins derived from mussels, engineers at MIT have made a supersticky underwater adhesive. They're now looking to make "living glue." Video provided by Newsy
Powered by NewsLook.com
Company Copies Keys From Photos

Company Copies Keys From Photos

Newsy (Sep. 22, 2014) A new company allows customers to make copies of keys by simply uploading a couple of photos. But could it also be great for thieves? Video provided by Newsy
Powered by NewsLook.com
The Hyped-Up Big Bang Discovery Has A Dust Problem

The Hyped-Up Big Bang Discovery Has A Dust Problem

Newsy (Sep. 22, 2014) An analysis of new satellite data casts serious doubt on a previous study about the Big Bang that was once hailed as revolutionary. Video provided by Newsy
Powered by NewsLook.com
Rockefeller Oil Heirs Switching To Clean Energy

Rockefeller Oil Heirs Switching To Clean Energy

Newsy (Sep. 22, 2014) The Rockefellers — heirs to an oil fortune that made the family name a symbol of American wealth — are switching from fossil fuels to clean energy. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins