Featured Research

from universities, journals, and other organizations

Protein snapshots reveal clues to breast cancer outcomes

Date:
May 6, 2011
Source:
European Society for Medical Oncology (ESMO)
Summary:
Measuring the transfer of tiny amounts of energy from one protein to another on breast cancer cells has given scientists a detailed view of molecular interactions that could help predict how breast cancer patients will respond to particular therapies.

Measuring the transfer of tiny amounts of energy from one protein to another on breast cancer cells has given scientists a detailed view of molecular interactions that could help predict how breast cancer patients will respond to particular therapies.

At the IMPAKT Breast Cancer Conference in Brussels, Dr Gargi Patel from the Richard Dimbleby Department, King's College London, described cutting-edge research in which she and colleagues captured detailed information about protein interactions on cancer cells, and correlated that with established genetic markers for cancer spread.

Dr Patel's group used a microscope technique known as Foerster resonance energy transfer (FRET) imaging, which allows them to measure the interactions between two proteins.

In this technique, each of the proteins is labeled with a fluorescent tag --one might be labeled green and the other red, for example. A laser is used to excite one of these labels, which becomes excited and then decays back to its rest state in a specific lifetime, which the researchers define as its fluorescent lifetime.

When this label comes within a nanometer of the second label, exciting by the laser causes some of its energy to be donated to the other label, and the fluorescent lifetime of the first label becomes shorter. "In the context of our work, this process only occurs when two proteins are close enough to be interacting, and hence we can quantitate protein-protein interactions," Dr Patel explains.

In earlier work, Dr Patel's group used this technique on breast cancer cells in the lab to describe in detail the interaction between the cell-surface molecules Her2 and Her3 that is known to determine whether a cancer will respond to the drug lapatinib.

"We aim to establish a 'signature' representing functional molecular biology, by examining protein-protein interactions, and to correlate this signature with established prognostic gene signatures and clinical and radiological data to predict patient outcome in terms of likelihood of recurrence and response to treatment such as lapatinib," Dr Patel explains. "The results we present at IMPAKT are the start of this work."

"The work I am doing captures images of the molecular state of Her2-Her3 receptors as a dimer, and shows us the results of lapatinib treatment. We have also identified a specific mutation in Her2, which reduces dimerization and the lapatinib effect. We can test tumor samples for this Her2 mutation, which would confer resistance to treatment."

This technology could have a significant clinical impact, the researchers say, by improving the accuracy of predictions about a cancer's risk of spread or response to treatment.

"Currently our methods of prognosis estimation depend on clinical data such as tumor size and lymph node status, or upon correlation with genetic signatures which may delineate tumors with higher metastatic potential. However the accuracy of any single method is far from 100%. We aim to add to the tools available by introducing a signature reflecting the functional state of cancer cells, by assessing protein-protein interactions. We could integrate this information with genetic and clinical data to more accurately predict outcome," Dr Patel said.

Commenting on the study, which he was not involved in, Dr Stephen Johnston, from Royal Marsden NHS Foundation Trust & Institute of Cancer Research, noted: "Lapatinib is a novel drug to target Her2 positive breast cancer, and works in a different way to the established monoclonal antibody trastuzumab."

"It is recognized that other growth factor receptors in breast cancer such as Her3 can modulate how Her2 positive tumors respond, often making them resistant to trastuzumab. In contrast, these researchers have developed as assay to measure Her2/Her3 heterodimers and the molecular pathways that they activate in human tumors, and suggest that in future this assay could be used to predict for response to lapatinib in the clinic."


Story Source:

The above story is based on materials provided by European Society for Medical Oncology (ESMO). Note: Materials may be edited for content and length.


Journal Reference:

  1. Combining Protein Interaction And Gene Profiling Methods For Predicting Lapatinib Response G. Patel, K. Lawler, G. Weitsman, G. Fruhwirth, N. Woodman, C. Gillett, P. barber, B. Vojnovic, P. Ellis, T. Ng. Combining Protein Interaction And Gene Profiling Methods For Predicting Lapatinib Response. Annals of Oncology, 2011; 22: Supplement 2

Cite This Page:

European Society for Medical Oncology (ESMO). "Protein snapshots reveal clues to breast cancer outcomes." ScienceDaily. ScienceDaily, 6 May 2011. <www.sciencedaily.com/releases/2011/05/110505083233.htm>.
European Society for Medical Oncology (ESMO). (2011, May 6). Protein snapshots reveal clues to breast cancer outcomes. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2011/05/110505083233.htm
European Society for Medical Oncology (ESMO). "Protein snapshots reveal clues to breast cancer outcomes." ScienceDaily. www.sciencedaily.com/releases/2011/05/110505083233.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Newsy (July 30, 2014) The Peace Corps is one of several U.S.-based organizations to pull workers out of West Africa because of the Ebola outbreak. Video provided by Newsy
Powered by NewsLook.com
Weather Kills 2K A Year, But Storms Aren't The Main Offender

Weather Kills 2K A Year, But Storms Aren't The Main Offender

Newsy (July 30, 2014) Health officials say 2,000 deaths occur each year in the U.S. due to weather, but it's excessive heat and cold that claim the most lives. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins