Featured Research

from universities, journals, and other organizations

Carbon, carbon everywhere, but not from the Big Bang

Date:
May 11, 2011
Source:
North Carolina State University
Summary:
As Star Trek is so fond of reminding us, we're carbon-based life forms. But the event that jump-started the universe, the Big Bang, didn't actually produce any carbon, so where the heck did it -- and we -- come from? A researcher has helped create supercomputer simulations that demonstrate how carbon is produced in stars, proving an old theory correct.

Afterglow of the Big Bang. A full-sky map of the oldest light in the universe. Colors indicate "warmer" (red) and "cooler" (blue) spots. The oval shape is a projection to display the whole sky; similar to the way the globe of the earth can be represented as an oval.
Credit: NASA/WMAP Science Team

As Star Trek is so fond of reminding us, we're carbon-based life forms. But the event that jump-started the universe, the Big Bang, didn't actually produce any carbon, so where the heck did it -- and we -- come from? An NC State researcher has helped create supercomputer simulations that demonstrate how carbon is produced in stars, proving an old theory correct.

More than 50 years ago, an astronomer named Fred Hoyle deduced that when three helium nuclei -- or alpha particles -- come together inside the core of a star, they have difficulty combining to form carbon-12, the stuff we're made of. So he predicted a new state of carbon-12, one with an energy tuned just right to make the formation of carbon possible in stars. This new state is now known as the Hoyle state. Later experimentation demonstrated that the theory was correct, but no one had ever been able to reproduce the Hoyle state from scratch, starting from the known interactions of protons and neutrons. If the Hoyle state didn't show up in those calculations, then the calculations must be incorrect or incomplete.

NC State physicist Dean Lee, along with German colleagues Evgeny Epelbaum, Hermann Krebs, and Ulf-G. Meissner, had previously developed a new method for describing all the possible ways that protons and neutrons can bind with one another inside nuclei. This "effective field theory" is formulated on a complex numerical lattice that allows the researchers to run simulations that show how particles interact. When the researchers put six protons and six neutrons on the lattice, the Hoyle state appeared together with other observed states of carbon-12, proving the theory correct from first principles.

"We've had simple models of the Hoyle state using three alpha particles for a long time, but the first principles calculations weren't giving anything close," Lee says. "Our method places the particles into a simulation with certain space and time parameters, then allows them to do what they want to do. Within those simulations, the Hoyle state shows up."

Their research appears in the May 13 issue of Physical Review Letters.

Lee adds, "This work is valuable because it gives us a much better idea of the kind of 'fine-tuning' nature has to do in order to produce carbon in stars."


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Evgeny Epelbaum, Hermann Krebs, Dean Lee, Ulf-G. Meiίner. Ab Initio Calculation of the Hoyle State. Physical Review Letters, 2011; 106 (19) DOI: 10.1103/PhysRevLett.106.192501

Cite This Page:

North Carolina State University. "Carbon, carbon everywhere, but not from the Big Bang." ScienceDaily. ScienceDaily, 11 May 2011. <www.sciencedaily.com/releases/2011/05/110511131134.htm>.
North Carolina State University. (2011, May 11). Carbon, carbon everywhere, but not from the Big Bang. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2011/05/110511131134.htm
North Carolina State University. "Carbon, carbon everywhere, but not from the Big Bang." ScienceDaily. www.sciencedaily.com/releases/2011/05/110511131134.htm (accessed October 21, 2014).

Share This



More Space & Time News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) — A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com
Latin America Launches Communications Satellite

Latin America Launches Communications Satellite

AFP (Oct. 17, 2014) — Argentina launches a home-built satellite, a first for Latin America. It will ride a French-made Ariane 5 rocket into orbit, and will provide cell phone, digital TV, Internet and data services to the lower half of South America. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
This Week @ NASA, October 17, 2014

This Week @ NASA, October 17, 2014

NASA (Oct. 17, 2014) — Power spacewalk, MAVEN’s “First Light”, Hubble finds extremely distant galaxy and more... Video provided by NASA
Powered by NewsLook.com
Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Newsy (Oct. 17, 2014) — The smallest of Saturn's main moons, Mimas, wobbles as it orbits. Research reveals it might be due to a global ocean underneath its icy surface. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins