Featured Research

from universities, journals, and other organizations

Novel method of producing hydrogen fuel from sunlight meet cost targets

Date:
May 12, 2011
Source:
University of Colorado at Boulder
Summary:
A report commissioned by the US Department of Energy has concluded that a novel method of producing hydrogen fuel from sunlight is the only approach among eight competing technologies that is projected to meet future cost targets set by the federal agency.

A report commissioned by the U.S. Department of Energy has concluded that a novel University of Colorado Boulder method of producing hydrogen fuel from sunlight is the only approach among eight competing technologies that is projected to meet future cost targets set by the federal agency.

Related Articles


The process, which is being developed by Professor Alan Weimer's research team of CU-Boulder's chemical and biological engineering department, involves an array of mirrors to concentrate the sun's rays and create temperatures as high as 2,640 degrees Fahrenheit. The process consists of two steps -- each involving reactions of a thin film of metal ferrite coating with a reactive substrate contained in a solar receiver -- to split water into its gaseous components, hydrogen and oxygen.

Currently, the lowest cost method for producing hydrogen is the steam-methane reforming of natural gas, primarily methane. In this process, significant amounts of carbon dioxide -- a powerful greenhouse gas -- are released into the atmosphere.

The DOE commissioned 76-page report was produced by TIAX, a technology processing and commercialization company headquartered in Lexington, Mass. The report authors evaluated process conditions, major capital equipment, materials and utilities usage rates, estimated equipment sizes, financial and operating assumptions.

CU's approach does not result in greenhouse gas emissions and is more cost effective than competing technologies because the water-splitting reactions occur at lower temperatures and are faster, said Weimer. In addition, less energy and fewer active materials are required, resulting in lower costs.

Weimer said the solar receiver's thin film coating on a porous active support allows heat and steam -- necessary to reactions -- to flow more easily through the device and for reactions to occur more efficiently.

"We've been able to reduce the temperature required to split water by about 250 degrees Celsius [482 degrees F] and we have eliminated what appears to be a major roadblock in terms of an unstable intermediate by using thin films and a reactive substrate," said Weimer. "It's pretty significant and it seems like there's a good shot for this to become mainstream in the southwest U.S. and other high insolation regions around the world."

Weimer refers to his water-splitting method as a "triple play." It not only uses renewable resources and produces sustainable hydrogen, but it also can purify brackish into potable water -- a byproduct that he says could address water shortage issues in the future.

Weimer is presenting his research at the DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting in Washington, D.C. Weimer said he hopes to garner continued research support through government and private resources.

The DOE is investigating novel approaches for solar thermochemical water splitting to produce hydrogen with the eventual goal of commercializing production. Cost targets in this analysis set hydrogen production in 2015 at 6 dollars per kilogram -- equal to 2.2 pounds -- and hydrogen delivery in 2025 at 2 to 3 dollars per kilogram. CU-Boulder's thin-film metal ferrite process is projected to meet both benchmarks.

Other technologies appearing in the analysis included reactions with hybrid-sulfur, copper chloride, sulfur-ammonia, zinc oxide, manganese oxide and cadmium oxide.

Weimer directs a research group of three postdoctoral research associates, 12 doctoral students and six undergraduates. He has the largest academic research group in the U.S. focused on solar thermochemical processing.


Story Source:

The above story is based on materials provided by University of Colorado at Boulder. Note: Materials may be edited for content and length.


Cite This Page:

University of Colorado at Boulder. "Novel method of producing hydrogen fuel from sunlight meet cost targets." ScienceDaily. ScienceDaily, 12 May 2011. <www.sciencedaily.com/releases/2011/05/110512161936.htm>.
University of Colorado at Boulder. (2011, May 12). Novel method of producing hydrogen fuel from sunlight meet cost targets. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2011/05/110512161936.htm
University of Colorado at Boulder. "Novel method of producing hydrogen fuel from sunlight meet cost targets." ScienceDaily. www.sciencedaily.com/releases/2011/05/110512161936.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com
Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins