Featured Research

from universities, journals, and other organizations

Free-standing single-walled carbon nanotube thin films

Date:
May 13, 2011
Source:
Aalto University
Summary:
Single-walled CNTs (SWCNTs) are a unique family of materials exhibiting diverse useful chemical and physical properties, researchers in Finland are demonstrating. Thin films of SWCNTs have many unique properties such as high porosity and specific surface area, low density, high ratio of optical transmittance to sheet resistance, high thermal conductivity and chemical sensitivity, and tunable metallic and semiconducting properties.

A photo of the free-standing SWCNTs supported by a polymer film at the edges and various graphs demonstrating outstanding performance in different devices such as an aerosol filter, a laser absorber, a transparent and flexible electrode, and an electrochemical sensor.
Credit: Image courtesy of Aalto University

Single-walled CNTs (SWCNTs) are a unique family of materials exhibiting diverse useful chemical and physical properties, researchers in Finland are demonstrating.

Thin films of SWCNTs have many unique properties such as high porosity and specific surface area, low density, high ratio of optical transmittance to sheet resistance, high thermal conductivity and chemical sensitivity, and tunable metallic and semiconducting properties.

Recently researchers from Department of Applied Physics at Aalto University (Finland) in collaboration with Canatu Ltd. (Finland) have discovered a simple and rapid method to prepare thin multifunctional single-walled carbon nanotube films without any substrate (free-standing films). Usually SWCNT films are prepared from suspensions of SWCNTs by a liquid filtration. This method typically involves several time and resource consuming and potentially detrimental liquid dispersion and purification steps ending up with dense SWCNT networks on a filter, which have a transfer issue. Moreover, preparation of free-standing films by the vacuum-filtration method is still a challenging task.

"Our method allows the preparation of SWCNT deposits both on different substrates and in the form of free-standing films during less than 15 s. This becomes possible due to the fact that the SWCNTs produced in the gas phase synthesis process gave very high purity and crystallinity, can be directly deposit from the gas to a substrate and accordingly be directly utilised without additional purification steps," says Dr. David P. Brown, CEO of the company Canatu Ltd, which commercializes the SWCNT films.

The method easily allows Canatu to alter the thickness of multifunctional free-standing SWCNT films from a sub-monolayer (when the amount of SWCNTs is insufficient to create a single continuous layer) to a few micrometers.

Collaboration with other Finnish universities

According to the researchers, the collaboration with other Finnish universities and institutions, Tampere University of Technology and Oulu University, was extremely important to investigate the unique properties and to demonstrate the multifunctionality of this unique material.

"We fabricated the state-of-the-art components for filtration of aerosol nanoparticles, transparent, flexible and highly conductive electrodes, extremely sensitive electrochemical sensors, polymer free saturable laser absorbers, gas heaters, thermo acoustic loudspeakers, and gas flow meters," says professor Esko I. Kauppinen, the leader of the research group.

SWCNT films − wide range of applications

"However, the wide range of applications is not limited to those reported in our paper. The superior mechanical and electrical properties of these films suggest potential uses in a broad range of other devices. As a filter, SWCNT films could be used for filtration of bacteria and viruses. The possibility to heat SWCNT films can be utilized for water or air sterilization. Additionally, since SWCNTs contain iron particles embedded inside them, one could exploit their magnetic properties. Their high strength coupled with high electrical conductivity could be employed in novel energy generators, electromagnetic interference shielding, flexible radio frequency identification tags, touch sensors, flat panel displays and static-charge dissipators. The ultrahigh surface area coupled with high electrical conductivity could be used in advanced solar cells and super capacitors," Dr. Albert G. Nasibulin, the leader of this project and the first author of the article related to the discovery of multifunctional free-standing SWCNTs concludes.

The results has been recently published in the journal ACS Nano.

Even though graphene has recently attracted much attention from the research community, some properties of SWCNTs, such as porosity, mechanical strength, and fine-tunability of optical and electrical properties, provide many applications where the flat, single-layered carbon structure cannot compete with its tubular 'brother'.


Story Source:

The above story is based on materials provided by Aalto University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Albert G. Nasibulin, Antti Kaskela, Kimmo Mustonen, Anton S. Anisimov, Virginia Ruiz, Samuli Kivistö, Simas Rackauskas, Marina Y. Timmermans, Marko Pudas, Brad Aitchison, Marko Kauppinen, David P. Brown, Oleg G. Okhotnikov, Esko I. Kauppinen. Multifunctional Free-Standing Single-Walled Carbon Nanotube Films. ACS Nano, 2011; 110310090902026 DOI: 10.1021/nn200338r

Cite This Page:

Aalto University. "Free-standing single-walled carbon nanotube thin films." ScienceDaily. ScienceDaily, 13 May 2011. <www.sciencedaily.com/releases/2011/05/110513064058.htm>.
Aalto University. (2011, May 13). Free-standing single-walled carbon nanotube thin films. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2011/05/110513064058.htm
Aalto University. "Free-standing single-walled carbon nanotube thin films." ScienceDaily. www.sciencedaily.com/releases/2011/05/110513064058.htm (accessed July 30, 2014).

Share This




More Matter & Energy News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Stranded Whale Watching Boat Returns to Boston

Stranded Whale Watching Boat Returns to Boston

Reuters - US Online Video (July 29, 2014) Passengers stuck overnight on a whale watching boat return safely to Boston. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins