Featured Research

from universities, journals, and other organizations

Tale of two mice pinpoints major factor for insulin resistance

Date:
May 16, 2011
Source:
Joslin Diabetes Center
Summary:
Researchers have now identified an enzyme called PKC-delta as an important molecular modifier for development of insulin resistance, diabetes and fatty liver in mice. They also have found evidence suggesting a similar role for the enzyme in humans, making PKC-delta a promising new target for drugs for diabetes and related ailments.

The road to type 2 diabetes is paved with insulin resistance, a condition often associated with obesity in which the hormone begins to fail at its job helping to convert sugars to energy. Researchers at Joslin Diabetes Center have now identified an enzyme called PKC-delta as an important molecular modifier for development of insulin resistance, diabetes and fatty liver in mice. They also have found evidence suggesting a similar role for the enzyme in humans, making PKC-delta a promising new target for drugs for diabetes and related ailments.

Investigators in the laboratory of C. Ronald Kahn, M.D., began with two existing strains of mice that are on opposite sides of the spectrum for insulin resistance.

"The 'B6' mouse is very prone to develop both obesity and diabetes, and the '129' mouse is quite protected from both, even if it possesses a genetic defect in insulin signaling," says Dr. Kahn, who is the Mary K. Iacocca Professor of Medicine at Harvard Medical School. "Comparing the two models, it's as if there's an on/off switch for insulin resistance and diabetes between them. We reasoned that if we could find out the differences between B6 and 129 mice, we could identify a factor that could be a major modifier of insulin resistance, and a good drug target for treatment of type 2 diabetes."

In previous work, the Kahn lab created a genetic cross between these two mice models, did a genome-wide screening and found an area on mouse chromosome 14 that appeared to be important for insulin sensitivity. In the latest paper, published online in the Journal of Clinical Investigation, they followed up and found that PKC-delta stood out in activity among the genes in that region.

The researchers then showed that levels of the PKC-delta enzyme were about two times as high in the liver and other tissues in the B6 as in the 129 mouse. When both types were put on high-fat diets, levels of the enzyme stayed the same in the 129 mouse but rose to three times higher in the B6 mouse.

Could these differences be enough to make the profound change in insulin sensitivity? The scientists next created three new mice models to check.

In one model, they removed one of the two normal copies of the PKC-delta gene from B6 mice, thus cutting production of the enzyme in half, and the mice became much more insulin sensitive. In a second effort, they removed the gene entirely from the livers of B6 mice, and again the resulting mice were more insulin sensitive. In a third model, they inserted an extra copy of the PKC-delta gene in the liver of 129 mice, which became much more insulin resistant and diabetic.

In short, PKC-delta levels correlated closely with insulin resistance and the abnormalities in glucose tolerance in all three cases of mice. In addition, the insulin resistance correlated with increased fat in the liver, an increasing problem in people with insulin resistance.

Biopsies of human liver tissue, Dr. Kahn says, also showed that levels of the enzyme are heightened in people who are obese or have diabetes. "People with diabetes tend to get fatty liver and that also seems to correlate with the activity of PKC-delta," he adds.

Overall, "drugs that inhibit the activity of PKC-delta in the liver and other tissues potentially could aid treatments for diabetes and fatty liver disease, which is second only to alcohol as a cause of liver failure," Dr. Kahn says.

The research was supported by the National Institutes of Health, the American Diabetes Association and the Mary K. Iacocca Professorship.


Story Source:

The above story is based on materials provided by Joslin Diabetes Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Olivier Bezy, Thien T. Tran, Jussi Pihlajamδki, Ryo Suzuki, Brice Emanuelli, Jonathan Winnay, Marcelo A. Mori, Joel Haas, Sudha B. Biddinger, Michael Leitges, Allison B. Goldfine, Mary Elizabeth Patti, George L. King, C. Ronald Kahn. PKCδ regulates hepatic insulin sensitivity and hepatosteatosis in mice and humans. Journal of Clinical Investigation, 2011; DOI: 10.1172/JCI46045

Cite This Page:

Joslin Diabetes Center. "Tale of two mice pinpoints major factor for insulin resistance." ScienceDaily. ScienceDaily, 16 May 2011. <www.sciencedaily.com/releases/2011/05/110516121423.htm>.
Joslin Diabetes Center. (2011, May 16). Tale of two mice pinpoints major factor for insulin resistance. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2011/05/110516121423.htm
Joslin Diabetes Center. "Tale of two mice pinpoints major factor for insulin resistance." ScienceDaily. www.sciencedaily.com/releases/2011/05/110516121423.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Predicting Heart Transplant Rejection With a Blood Test

Predicting Heart Transplant Rejection With a Blood Test

Ivanhoe (Aug. 27, 2014) — Now a new approach to rejection of donor organs could change the way doctors predict transplant rejection…without expensive, invasive procedures. Video provided by Ivanhoe
Powered by NewsLook.com
Better Braces That Vibrate

Better Braces That Vibrate

Ivanhoe (Aug. 27, 2014) — The length of time you have to keep your braces on could be cut in half thanks to a new device that speeds up the process. Video provided by Ivanhoe
Powered by NewsLook.com
Smartphone App Tracks Your Heart Rate

Smartphone App Tracks Your Heart Rate

Ivanhoe (Aug. 27, 2014) — A new app that can track your heart rate 24/7 is available for download in your app store and its convenience could save your life. Video provided by Ivanhoe
Powered by NewsLook.com
Stroke in Young Adults

Stroke in Young Adults

Ivanhoe (Aug. 27, 2014) — A stroke can happen at any time and affect anyone regardless of age. This mother chose to give her son independence and continue to live a normal life after he had a stroke at 18 years old. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins