Featured Research

from universities, journals, and other organizations

Stopping HIV transmission with a molecular barrier?

Date:
May 16, 2011
Source:
Children's Hospital Boston
Summary:
Using a technique that silences genes promoting infection, researchers have developed a novel, topically-applied molecular microbicide capable of preventing HIV transmission. The microbicide is predicted to have long-lasting effects in mice, opening the door to developing an intravaginal microbicide that could protect women against HIV infection potentially for weeks at a time and bolster public health efforts to halt the spread of HIV/AIDS.

Using a technique that silences genes promoting infection, researchers have developed a novel, topically-applied molecular microbicide capable of preventing HIV transmission. The microbicide is predicted to have long-lasting effects in mice, opening the door to developing an intravaginal microbicide that could protect women against HIV infection potentially for weeks at a time and bolster public health efforts to halt the spread of HIV/AIDS.

The study, led by Lee Adam Wheeler and Judy Lieberman, MD, PhD, of the Immune Disease Institute and the Program in Cellular and Molecular Medicine at Children's Hospital Boston, was published online on May 16 in the Journal of Clinical Investigation.

The microbicide takes advantage of a molecular phenomenon called RNA interference (RNAi), in which small pieces of RNA called small interfering RNAs (siRNAs) silence the expression of individual genes with complementary sequences. Originally observed in plants, RNAi was found to be active in mammals only a decade ago, but it is already the focus of many clinical investigations.

Lieberman and Wheeler chose to investigate RNAi's potential to provide a molecular barrier against HIV transmission based on earlier work in her laboratory showing that the phenomenon could be harnessed to prevent herpes simplex virus (HSV) transmission, and also on recent advances in understanding how HIV penetrates the body. "The current model of HIV transmission holds that the virus is localized to the genital tract for about a week, which could provide a window of opportunity to intervene and prevent the infection from establishing itself throughout the body," said Lieberman. "And last year it was shown that it is possible to prevent HIV transmission, at least to some extent, with a topical vaginal agent using an antiviral drug, thus providing proof-of-principle that a topical strategy could interfere with virus transmission."

In the current study, the researchers used siRNAs that turned off two viral genes and that of one of HIV's two host co-receptors, CCR5. HIV uses CCR5, found on immune cells called T cells and macrophages, to gain entry into an uninfected person's immune cells and establish a foothold within the body. Individuals harboring mutations that deactivate CCR5 are resistant to infection with HIV.

To ensure that the siRNAs would be delivered only to the immune cells targeted by HIV, the research team linked the siRNAs to an aptamer -- a second piece of RNA designed to attach to a specific molecule -- that binds to HIV's main receptor, CD4, to create CD4 aptamer-siRNA chimeras (CD4-AsiCs).

"By using CD4 as a binding site but knocking down CCR5, we get specificity for the cells targeted by HIV but avoid the risk of interfering with the overall immune response," Lieberman noted.

When tested in vitro using cell lines and blood cells, the CD4-AsiCs bound only to immune cells displaying CD4 on their surface; turned off expression in those cells of the three targeted genes; and prevented HIV replication. In addition, CD4-AsiCs successfully penetrated cultured human cervicovaginal tissues to reach immune cells deep within the tissue layers, silence target gene expression, and prevent HIV infection of the cultures.

To test the effectiveness of this system in vivo, the study team applied CD4-AsiCs topically within the vaginal canal of female mice with humanized immune systems, and then exposed those mice intravaginally to HIV so as to mimic sexual transmission of the virus. As in the in vitro model, the CD4-AsiCs were able to penetrate through the vaginal walls of these mice to the immune cells within the tissues, deliver the siRNAs to cells displaying CD4, and turn off the expression of the targeted genes. Over the following 12 weeks, none of the mice treated with the siRNAs showed any biological signs of HIV infection, while all of the control mice progressed to full-blown HIV infection.

Lieberman thinks that the RNAi-based microbicide's specificity and duration of action make it attractive for further pharmaceutical development. "The problem with most topical methods for preventing sexual transmission of disease is that you have to use them just before having sex, and compliance is a huge issue," she said. "But our laboratory results show that we can knock down CCR5 expression potentially for weeks, suggesting that we could create a stable viral-resistant state where one would only have to apply the agent every couple of weeks."

According to Wheeler, the method's modularity suggests that its promise is not limited to HIV. "You could basically switch in or out any kind of siRNA or aptamer for any binding target to knock down any gene you would want, be it host or viral." Lieberman added, "Conceivably, one could include siRNAs against multiple viral agents in a cocktail to gain protection from multiple sexually transmitted diseases, including HSV and human papilloma virus."


Story Source:

The above story is based on materials provided by Children's Hospital Boston. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lee Adam Wheeler, Radiana Trifonova, Vladimir Vrbanac, Emre Basar, Shannon McKernan, Zhan Xu, Edward Seung, Maud Deruaz, Tim Dudek, Jon Ivar Einarsson, Linda Yang, Todd M. Allen, Andrew D. Luster, Andrew M. Tager, Derek M. Dykxhoorn, Judy Lieberman. Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras. Journal of Clinical Investigation, 2011; DOI: 10.1172/JCI45876

Cite This Page:

Children's Hospital Boston. "Stopping HIV transmission with a molecular barrier?." ScienceDaily. ScienceDaily, 16 May 2011. <www.sciencedaily.com/releases/2011/05/110516131534.htm>.
Children's Hospital Boston. (2011, May 16). Stopping HIV transmission with a molecular barrier?. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2011/05/110516131534.htm
Children's Hospital Boston. "Stopping HIV transmission with a molecular barrier?." ScienceDaily. www.sciencedaily.com/releases/2011/05/110516131534.htm (accessed September 19, 2014).

Share This



More Health & Medicine News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com
How The 'Angelina Jolie Effect' Increased Cancer Screenings

How The 'Angelina Jolie Effect' Increased Cancer Screenings

Newsy (Sep. 19, 2014) Angelina's Jolie's decision to undergo a preventative mastectomy in 2013 inspired many women to seek early screenings for the disease. Video provided by Newsy
Powered by NewsLook.com
The Cost of Ebola

The Cost of Ebola

Reuters - Business Video Online (Sep. 18, 2014) As Sierra Leone prepares for a three-day "lockdown" in its latest bid to stem the spread of Ebola, Ciara Lee looks at the financial implications of fighting the largest ever outbreak of the disease. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins