Featured Research

from universities, journals, and other organizations

Protein could offer target to reduce lung damage from smoking-caused emphysema

Date:
May 17, 2011
Source:
Indiana University School of Medicine
Summary:
An international research team has identified a lung protein that appears to play a key role in smoking-related emphysema and have crafted an antibody to block its activity.

An international research team has identified a lung protein that appears to play a key role in smoking-related emphysema and have crafted an antibody to block its activity, Indiana University scientists reported.

Related Articles


The research, conducted in mice, suggests that the protein, a cytokine named EMAPII, could provide a target for drugs to treat emphysema, said Irina Petrache, M.D., associate professor of medicine at the Indiana University School of Medicine. The research was posted online May 16 for the June edition of The Journal of Clinical Investigation.

Emphysema, a form of chronic obstructive pulmonary disease (COPD) that affects nearly 5 million people in the U.S alone, is caused by the destruction of cells that transfer oxygen from the lungs to the blood, along with inflammation in the lungs. Cigarette smoking is the most common cause of emphysema.

The cytokine EMAPII -- a type of cell-signaling molecule -- is normally part of the process of early lung development. Research had previously found that EMAPII could cause the death of cells that line blood vessels -- endothelial cells -- and inflammation, but it had not been identified as the molecular culprit at work when cigarette smoking inflicted its damage on the lungs.

"The fact that we could have a single target affecting two major processes made us excited about looking for it in response to smoking," said Dr. Petrache, the Floyd and Reba Smith Investigator in Respiratory Disease at IU.

When the researchers induced emphysema in mice exposed to cigarette smoke, tests showed the mice had elevated levels of the EMAPII cytokine. In other tests, the scientists also found elevated levels of the cytokine in the lungs of patients with COPD.

The researchers also found that the cell death caused by the EMAPII resulted in the release of enzymes that cause more production of EMAPII, causing a vicious cycle of elevated cytokine levels and more cell death.

Members of the research team, led by first author Matthias Clauss, Ph.D., IU associate research professor of cellular and integrative physiology, created an antibody designed to specifically target EMAPII and block its activity. The mice received an inhaled version of the antibody during their third month of smoking. They then were exposed to a fourth month of smoking without the treatment.

The mice receiving the treatment had significantly less cell death and inflammation and improved lung function compared to the smoking mice who did not receive the treatment. Moreover the benefits to the treated mice continued even after the treatment stopped.

Next steps include optimizing the duration of the antibody treatments to determine whether they continue to have an effect after the animals have stopped smoking, she said. Plans also call for work to measure levels of the cytokine in large numbers of human emphysema and COPD patients to determine whether it can be used as a biomarker to measure the presence, severity or type of lung disease.

Considerable research work remains before an EMAPII antibody might be ready for testing in humans, Dr. Petrache said.

Additional researchers on the project included Robert Voswinckel and Sandeep Nikam of the Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Gangaraju Rajashekhar, Ninotchka L. Sigua, Natalia I. Rush, Kelly S. Schweitzer, Krzysztof Kamocki, Amanda J. Fisher, Yuan Gu, Bilal Safadi, Homer L. Twigg III and Robert G. Presson of the IU School of Medicine; Heinz Fehrenbach of the Leibniz Center for Medicine and Biosciences, Borstel, Germany; Ali Φ. Yildirim of the German Research Center for Environmental Health, Helmholtz Zentrum, Munich, Germany; Walter C. Hubbard of the Johns Hopkins University, Baltimore; Rubin M. Tuder of the University of Colorado Health Science Center, Denver; and Sanjay Sethi of New York University School of Medicine.

Funding for the research was provided by the National Institutes of Health, Deutsche Forschungsgemeinschaft, the German Clusters of Excellence initiative and the European Commission.


Story Source:

The above story is based on materials provided by Indiana University School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Matthias Clauss, Robert Voswinckel, Gangaraju Rajashekhar, Ninotchka L. Sigua, Heinz Fehrenbach, Natalia I. Rush, Kelly S. Schweitzer, Ali Φ. Yildirim, Krzysztof Kamocki, Amanda J. Fisher, Yuan Gu, Bilal Safadi, Sandeep Nikam, Walter C. Hubbard, Rubin M. Tuder, Homer L. Twigg, Robert G. Presson, Sanjay Sethi, Irina Petrache. Lung endothelial monocyte-activating protein 2 is a mediator of cigarette smoke–induced emphysema in mice. Journal of Clinical Investigation, 2011; DOI: 10.1172/JCI43881

Cite This Page:

Indiana University School of Medicine. "Protein could offer target to reduce lung damage from smoking-caused emphysema." ScienceDaily. ScienceDaily, 17 May 2011. <www.sciencedaily.com/releases/2011/05/110516162149.htm>.
Indiana University School of Medicine. (2011, May 17). Protein could offer target to reduce lung damage from smoking-caused emphysema. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2011/05/110516162149.htm
Indiana University School of Medicine. "Protein could offer target to reduce lung damage from smoking-caused emphysema." ScienceDaily. www.sciencedaily.com/releases/2011/05/110516162149.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Solitair Device Aims to Takes Guesswork out of Sun Safety

Solitair Device Aims to Takes Guesswork out of Sun Safety

Reuters - Innovations Video Online (Mar. 31, 2015) — The Solitair device aims to take the confusion out of how much sunlight we should expose our skin to. Small enough to be worn as a tie or hair clip, it monitors the user&apos;s sun exposure by taking into account their skin pigment, location and schedule. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins