Featured Research

from universities, journals, and other organizations

Editing scrambled genes in human stem cells may help realize the promise of stem cell-gene therapy

Date:
May 19, 2011
Source:
Salk Institute
Summary:
In principle, genetic engineering is simple, but in practice, replacing a faulty gene with a healthy copy is anything but. Using mutated versions of the lamin A gene as an example to demonstrate the versatility of their virus-based approach, researchers successfully edited a diseased gene in patient-specific induced pluripotent stem cells as well as adult stem cells.

In principle, genetic engineering is simple, but in practice, replacing a faulty gene with a healthy copy is anything but. Using mutated versions of the lamin A gene as an example to demonstrate the versatility of their virus-based approach, researchers at the Salk Institute for Biological Studies successfully edited a diseased gene in patient-specific induced pluripotent stem cells as well as adult stem cells.

The study, which will be published in the June 3, 2011 issue of Cell Stem Cell but are already available online, demonstrates that the gene-editing approach developed by Salk professor Juan Carlos Izpisúa Belmonte, Ph.D., and his team provides an efficient and safe tool for cell engineering and opens the way for gene editing-based stem cell therapies suitable for clinical applications.

"The ability to derive and grow human pluripotent stem cells in the laboratory has raised enormous expectations within the biomedical community due to their transplantational potential in clinical settings," says Izpisua Belmonte, a professor in the Gene Expression Laboratory and the study's leader. "This, when combined with the development of efficient and safe gene editing technologies in human stem cells may greatly help the realization of these expectations."

As envisioned by its earliest proponents, gene therapy introduces a healthy copy of a gene to compensate for a defective one in the patient. But that approach has a major drawback. "Many therapeutic genes are only expressed transiently before they get shut off by the host cell or they are not expressed as expected because they don't occupy the same position in the genome as the natural genes," explains postdoctoral researcher and co-first author Keiichiro Suzuki.

To overcome those limitation, over the last several years, scientists tried to develop methods that allow them to precisely excise the section of the genome that encompasses the mutated gene and replace it with a matching fragment but sans mutation. One such method relies on molecular "fingers" that grab onto DNA, make a cut and stitch in the new sequence.

"There are still some unresolved problems with the so-called zinc-finger method," says postdoctoral researcher and co-first author Guang-Hui Liu. "The tricky part is to limit the zinc fingers to the sequence you are interested in to avoid introducing DNA breaks or new mutations elsewhere in the genome."

The Salk researchers addressed the shortcomings of previously established methods by taking advantage of an iPS-based model of Hutchinson-Gilford progeria, which was recently established in the laboratory of Izpisúa Belmonte. A rare, premature aging disease, Hutchinson-Gilford progeria is caused by a single point mutation in the gene encoding lamin A, which forms a protein scaffold on the inner edge of the nucleus that helps maintain chromatin structure and organize nuclear processes such as RNA and DNA synthesis.

Importantly, more that 400 different mutations in the lamin A gene have been reported, which are associated with a wide range of human degenerative diseases including muscular dystrophy, lipodystrophies and neuropathies.

The gene-targeting approach developed by Suzuki and his colleagues relies on the use of so-called helper-dependent adenoviral vector to deliver large mutation-free DNA molecules into cells. Once there, these replacement pieces initiate a process known as homologous recombination, which works a bit like the "find-and-replace" command in a word processor. If a piece of DNA is long enough, it will find and line up with the same sequence in the genome and swap places.

"The process was remarkably efficient and we couldn't detect any undesired off-target effects such genomic instability or epigenetic abnormalities," says Liu. "What's more, it allowed us to show that we can correct multiple mutations spanning large genomic regions."

In addition to iPS cells derived from progeria-patients, the researchers successfully applied their method to adult mesenchymal stem cells, which can differentiate into a variety of cell types, including adipocytes, osteoblasts, chondrocytes, cardiomyocytes, adipocytes, and, as described lately, beta-pancreatic islets cells.

"As a proof of principle, we focused on mesenchymal stem cells because of their extensive use in regenerative medicine," says Izpisúa Belmonte. "Lamin A mutations mainly effect mesoderm-derived tissues, thus gene-editing in these cells could be an attractive therapeutic option."

Researchers who also contributed to the work include co-first author Jing Qu, Fei Yi, Mo Li, Ignacio Sancho-Martinez, Sachin Kumar, Emmanuel Nivet, Jessica Kim, Rupa Devi Soligalla, Ilir Dubova and April Goebl in the IzpisúaBelmonte lab, Nongluk Plongthongkum, Ho-Lim Fung, and Kun Zhang in the Department of Engineering at the University of California, San Diego, as well as Jeanne F. Loring and Louise C. Laurent in the Center of Regenerative Medicine at the Scripps Research Institute.

The study was supported by the California Institute of Regenerative Medicine, the AFAR/Ellison Medical Foundation, the G. Harold and Leila Y. Mathers Charitable Foundation, the F.M. Kirby Foundation, sanofi-Aventis, MICINN, the Fundacion Cellex and grants from the National Institutes of Health.


Story Source:

The above story is based on materials provided by Salk Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Guang-Hui Liu, Keiichiro Suzuki, Jing Qu, Ignacio Sancho-Martinez, Fei Yi, Mo Li, Sachin Kumar, Emmanuel Nivet, Jessica Kim, Rupa Devi Soligalla, Ilir Dubova, April Goebl, Nongluk Plongthongkum, Ho-Lim Fung, Kun Zhang, Jeanne F. Loring, Louise C. Laurent, Juan Carlos Izpisua Belmonte. Targeted Gene Correction of Laminopathy-Associated LMNA Mutations in Patient-Specific iPSCs. Cell Stem Cell, 19 May 2011 DOI: 10.1016/j.stem.2011.04.019

Cite This Page:

Salk Institute. "Editing scrambled genes in human stem cells may help realize the promise of stem cell-gene therapy." ScienceDaily. ScienceDaily, 19 May 2011. <www.sciencedaily.com/releases/2011/05/110519122238.htm>.
Salk Institute. (2011, May 19). Editing scrambled genes in human stem cells may help realize the promise of stem cell-gene therapy. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2011/05/110519122238.htm
Salk Institute. "Editing scrambled genes in human stem cells may help realize the promise of stem cell-gene therapy." ScienceDaily. www.sciencedaily.com/releases/2011/05/110519122238.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) — West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) — A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) — Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) — Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins