Featured Research

from universities, journals, and other organizations

Study identifies novel role for a protein that could lead to new treatments for rheumatoid arthritis

Date:
May 23, 2011
Source:
Hospital for Special Surgery
Summary:
A new study by rheumatologists has shown that a powerful pro-inflammatory protein, tumor necrosis factor, can also suppress aspects of inflammation. The researchers say the identification of the mechanism of how this occurs could potentially lead to new treatments for diseases such as rheumatoid arthritis.

A new study by rheumatologists at Hospital for Special Surgery in New York has shown that a powerful pro-inflammatory protein, tumor necrosis factor (TNF), can also suppress aspects of inflammation. The researchers say the identification of the mechanism of how this occurs could potentially lead to new treatments for diseases such as rheumatoid arthritis. The study was published May 22 online in advance of publication in the journal Nature Immunology.

"Prior to this study, TNF has long been known as a potent pro-inflammatory cytokine, but if you look carefully through the literature, there are hints that it also has some suppressive functions, but nothing was known about the mechanisms," said Lionel Ivashkiv, M.D., associate chief scientific officer and physician in the Arthritis and Tissue Degeneration Program at Hospital for Special Surgery who led the study. "This is really the first mechanism showing how TNF can turn inflammation down."

Because many proteins have homeostatic functions, both driving and suppressing certain actions so a cell can maintain internal equilibrium, researchers thought TNF might not be an exception. "Most strong activators in the immune system trigger a feedback response to restrain the amount of inflammation," Dr. Ivashkiv said.

To find out, researchers designed experiments stimulating macrophages with lipopolysaccharide (LPS), a prototypical inflammatory factor that stimulates receptors important in inflammation. In test tube studies, the researchers treated human monocytes and macrophages, cells that have a key role in inflammatory diseases, with TNF and then challenged these cells with LPS. They found that the TNF suppressed the inflammatory response of the macrophages and monocytes. They then gave mice low doses of TNF followed by high doses of LPS and found that the mice were protected from the effects of high dose LPS, which is usually lethal. They discovered that the mechanism by which TNF suppressed the inflammatory response involved a protein known as GSK3 (glycogen synthase kinase 3-alpha) and a gene known as TNFAIP3 that encodes the A20 protein. Experiments with a drug that can inhibit GSK3 as well as experiments with RNA interference of A20, which can block A20 gene function, helped identify the roles of this protein and gene.

The researchers say the findings could be used to develop potential therapies for diseases, such as rheumatoid arthritis. "We think it is relevant to rheumatoid arthritis, not only because the cells we are studying (the macrophages) are exactly the same cells that migrate into joints and make the inflammatory cytokines involved in rheumatoid arthritis, but because A20 is involved. TNFAIP3 is one of the best linked genes to rheumatoid arthritis," Dr. Ivashkiv said. "There are polymorphisms in the A20 gene that have been linked to RA pathogenesis."

The researchers hypothesize that patients who make less A20 are more susceptible to inflammation and thus rheumatoid arthritis. One approach to treating RA could be to increase A20 levels in patients who naturally make less A20 by manipulating GSK-3, since this study showed that GSK-3 influences A20. "The study sort of opens a line of investigation to understanding how A20 levels can be manipulated in patients with various diseases," Dr. Ivashkiv said.

The findings could be applied to other diseases besides arthritis. In conditions such as rheumatoid arthritis, you may want to boost A20, but in other settings such as cancer, where the macrophages are suppressed, you may want to inhibit A20 expression.

"What the study shows that is new is that TNF has suppressive functions in addition to its well-known activating functions," Dr. Ivashkiv said. "Before this study, people thought it might suppress adaptive immunity, but surprisingly we found that it actually suppresses a cell of the innate immune system, the macrophage, which is the same cell that makes it and, by doing that, it regulates its own production."


Story Source:

The above story is based on materials provided by Hospital for Special Surgery. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sung Ho Park, Kyung-Hyun Park-Min, Janice Chen, Xiaoyu Hu, Lionel B Ivashkiv. Tumor necrosis factor induces GSK3 kinase–mediated cross-tolerance to endotoxin in macrophages. Nature Immunology, 2011; DOI: 10.1038/ni.2043

Cite This Page:

Hospital for Special Surgery. "Study identifies novel role for a protein that could lead to new treatments for rheumatoid arthritis." ScienceDaily. ScienceDaily, 23 May 2011. <www.sciencedaily.com/releases/2011/05/110522141600.htm>.
Hospital for Special Surgery. (2011, May 23). Study identifies novel role for a protein that could lead to new treatments for rheumatoid arthritis. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2011/05/110522141600.htm
Hospital for Special Surgery. "Study identifies novel role for a protein that could lead to new treatments for rheumatoid arthritis." ScienceDaily. www.sciencedaily.com/releases/2011/05/110522141600.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins