Featured Research

from universities, journals, and other organizations

New hope of detecting gravitational waves: Final piece of Einstein's jigsaw puzzle

Date:
May 28, 2011
Source:
Institute of Physics
Summary:
Direct evidence of the existence of gravitational waves is something that has long eluded researchers. However, new research has suggested that adding just one of the proposed detectors in Japan, Australia and India will drastically increase the expected rate of detection.

Direct evidence of the existence of gravitational waves is something that has long eluded researchers, however new research has suggested that adding just one of the proposed detectors in Japan, Australia and India will drastically increase the expected rate of detection.

Related Articles


In a study published May 27, 2011 in IOP Publishing's journal Classical and Quantum Gravity, Professor Bernard Schutz, of the Albert Einstein Institute, Germany, demonstrated that an additional detector would more than double the detection rate of gravitational waves and could double the amount of sky being covered.

It was estimated last year that by 2016 the existing network of four detectors would be able to detect, on average, 40 neutron-star merger events per year by monitoring the gravitational waves they produce. Using a computer analysis, this study showed that by performing optimal coherent data analysis, the network could theoretically detect 160 events per year.

The positioning of the current network actually makes such a large increase in detection rate unlikely; however Schutz has shown that using any of the three additional locations would change this dramatically.

The addition of all three new detectors would enable the detection of around 370 events a year, which could increase to 500 events after a few years of operation.

These detectors are most likely to encounter 'short bursts' of gravitational waves that arise from two stars or two black holes orbiting each other. The sheer acceleration of these types of events cause a distortion in space time -- known as a gravitational wave -- that spreads outwards like ripples moving across a lake.

Professor Schutz said, "The improvements brought about by new detectors are much bigger than the proportionate extra investment required. Even moving an existing LIGO detector to Australia brings two to four times the number of good-quality detections and also dramatically improves the direction information for the events."

"The new detector in Japan, approved last year, would add extra sensitivity and reliability and greatly improve sky coverage. Not only would we be more certain than ever of making detections, we would begin to be able to study neutron stars and gamma ray bursts with information obtainable in no other way."

Einstein's theory of general relativity describes how objects with mass bend and curve space-time. One can imagine holding out a taut bed sheet and placing a football in the centre -- the bed sheet will curve around the football, readily representing how space-time gets curved by objects with mass.

Just like the ripples moving across a lake, the distortion in space-time, caused by accelerating objects, gradually decreases in strength, so by the time they finally reach Earth they are very hard to detect.

Professor Schutz continued, "In my mind, detecting gravitational waves opens up a new way of investigating the universe. We expect frequent detections of gravitational waves from merging black holes, whose waves will carry an unmistakable signature. Since gravitational waves are the only radiation emitted by black holes, we will for the first time have a direct observation of a black hole."

"Beyond that, gravitational waves have great penetrating power, so they will allow us to see directly to the centre of the systems responsible for supernova explosions, gamma-ray bursts, and a wealth of other systems so far hidden from view."

At the moment, there are four detectors, currently being updated, that have the necessary sensitivity to measure gravitational waves. Three of these detectors exist as part of the LIGO project -- two in Hanford, Washington, and one in Livingston, Louisiana, -- whilst another detector exists in Cascina, Italy, as part of the VIRGO project.

Funding has begun for an additional detector located in Japan whilst there are further proposals for developing detectors in Australia and India. It has also been proposed to move one of the Hanford detectors to Australia.

A jointly owned British-German detector, located near Hanover, Germany, called GEO600 will begin observations for gravitational waves this summer, until the LIGO and VIRGO detectors become fully operational again.


Story Source:

The above story is based on materials provided by Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bernard F Schutz. Networks of gravitational wave detectors and three figures of merit. Classical and Quantum Gravity, 2011; DOI: 10.1088/0264-9381/28/12/125023

Cite This Page:

Institute of Physics. "New hope of detecting gravitational waves: Final piece of Einstein's jigsaw puzzle." ScienceDaily. ScienceDaily, 28 May 2011. <www.sciencedaily.com/releases/2011/05/110526205101.htm>.
Institute of Physics. (2011, May 28). New hope of detecting gravitational waves: Final piece of Einstein's jigsaw puzzle. ScienceDaily. Retrieved March 27, 2015 from www.sciencedaily.com/releases/2011/05/110526205101.htm
Institute of Physics. "New hope of detecting gravitational waves: Final piece of Einstein's jigsaw puzzle." ScienceDaily. www.sciencedaily.com/releases/2011/05/110526205101.htm (accessed March 27, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, March 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Amazon Complains U.S. Is Too Slow To Regulate Drones

Amazon Complains U.S. Is Too Slow To Regulate Drones

Newsy (Mar. 25, 2015) Days after getting approval to test certain commercial drones, Amazon says the Federal Aviation Administration is dragging its feet on the matter. Video provided by Newsy
Powered by NewsLook.com
Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Reuters - Innovations Video Online (Mar. 25, 2015) European researchers say our smartphone use offers scientists an ideal testing ground for human brain plasticity. Dr Ako Ghosh&apos;s team discovered that the brains and thumbs of smartphone users interact differently from those who use old-fashioned handsets. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
China Wants to Export Its Steel Problem

China Wants to Export Its Steel Problem

Reuters - Business Video Online (Mar. 25, 2015) China is facing a crisis with a glut of steel and growing public anger over the pollution created by production. In a move to solve the problem, some steel mills are looking to relocate overseas. Jane Lanhee Lee reports. Video provided by Reuters
Powered by NewsLook.com
Robot Stays on Its Feet Despite Punishment

Robot Stays on Its Feet Despite Punishment

Reuters - Innovations Video Online (Mar. 24, 2015) Robotic engineers have modelled a two-legged robot to be fast and agile like an ostrich. The design is more efficient and stable than bipedal robots built to move like humans, according to its creators who abuse the poor machine to test its skills. Ben Gruber has more. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins