Featured Research

from universities, journals, and other organizations

Bacterial protein secreting sticky appendages: Atomic-level images suggest new targets for antibacterial drugs

Date:
June 1, 2011
Source:
DOE/Brookhaven National Laboratory
Summary:
New atomic-level "snapshots" reveal details of how bacteria such as E. coli produce and secrete sticky appendages called pili, which help the microbes attach to and infect human cells. These crystal structures unravel a complex choreography of protein-protein interactions that will aid in the design of new antibacterial drugs.

The bacterial protein transport channel in its resting closed state (green) and the activated open state (blue). The channel is sealed by a plug structure that is shown in red. Note the change of the channel shape from oval to near circular and displacement of the plug when open. Some parts of the protein molecule are omitted for simplicity.
Credit: Image courtesy of DOE/Brookhaven National Laboratory

New atomic-level "snapshots" published in the June 2, 2011, issue of Nature reveal details of how bacteria such as E. coli produce and secrete sticky appendages called pili, which help the microbes attach to and infect human cells. "These crystal structures unravel a complex choreography of protein-protein interactions that will aid in the design of new antibacterial drugs," said Huilin Li, a biophysicist at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and a professor at Stony Brook University, who participated in the research with a number of collaborators in the U.S. and in Europe.

Many E. coli strains live harmlessly in our guts, but when they find their way into the urinary tract, they produce pili with sticky ends that allow them to attach to bladder cells and cause infection. Finding ways to interfere with pili formation could help thwart urinary tract infections, which affect millions of women around the world each year.

Previously, Li's group at Brookhaven/Stony Brook and colleagues at Washington University School of Medicine and University College London solved individual pieces of the puzzle. In 2008, they combined their efforts to publish the first complete structure of the pore-like protein complex that traverses the bacterial membrane and transports pili components from the microbe cell's interior to its outer surface.

But the scientists were still not sure how the transporter protein's various parts worked to "recruit" and bring together the many subunits that make up the pili -- or how it assembled and moved these structures through the membrane to the bacterial cell's surface. The new work, again combining efforts from the two teams, uses a range of imaging techniques and computer modeling to arrive at a more complete picture of the assembly process and transport mechanism.

"This is the first view of a protein transporter in the act of secreting its substrate," said Li.

At the European Synchrotron Radiation Facility in Grenoble, France, the Washington University/UK group determined the atomic-level crystal structure of the entire transporter protein, known as an "usher," bound to the sticky adhesin subunit that forms the end of a pilus and another helper protein, called a chaperone, that shuttles the pilus subunits to the usher one at a time. Meanwhile, Li's group worked at the National Synchrotron Light Source at Brookhaven (NSLS, http://www.nsls.bnl.gov/) to produce new images of the unbound usher protein in its closed, inactive state.

"Each group's work tells only part of the story, but when combined, the results provide unique insights into how the transporter works," said Li. "By comparing the same transporter in the closed and open state, we've determined how the gate should open, and exactly how the structure of the channel changes in response to the gate opening so the growing pilus can reach the exterior of the membrane," Li said.

When no subunits are bound to the usher, the barrel like pore remains plugged, completely sealed off. But when the first chaperoned subunit, the adhesin, arrives, it causes a dramatic conformational change that unplugs the pore and changes its shape from an oval to nearly circular.

"This large conformational rearrangement in the translocation channel upon activation by adhesin-chaperone is unprecedented for these barrel proteins, which until now were considered rigid structures," Li said.

The research also reveals that the usher protein has two binding sites for chaperone-subunit complexes. From the imaging studies and bioassays, it appears that the two operate in concert: While one chaperone-subunit complex remains bound as it moves through the translocation channel, the other site is available to recruit the next chaperone-subunit complex and add it to the growing pilus. Computer models show that the next incoming subunit is positioned in an ideal orientation for addition to the growing pilus structure via a "zip-in-zip-out" binding mechanism.

Blocking or removing either of the two binding sites may therefore be a way to inhibit pilus formation, and this idea is already being explored in new drug-development investigations. The other details of pilus assembly revealed by this study may suggest additional targets for new drugs.

This research was supported by the Medical Research Council (UK), the National Institutes of Health (US), and Laboratory Directed Research and Development funding at Brookhaven Lab. The National Synchrotron Light Source is supported by the DOE Office of Science.


Story Source:

The above story is based on materials provided by DOE/Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gilles Phan, Han Remaut, Tao Wang, William J. Allen, Katharina F. Pirker, Andrey Lebedev, Nadine S. Henderson, Sebastian Geibel, Ender Volkan, Jun Yan, Micha B. A. Kunze, Jerome S. Pinkner, Bradley Ford, Christopher W. M. Kay, Huilin Li, Scott J. Hultgren, David G. Thanassi, Gabriel Waksman. Crystal structure of the FimD usher bound to its cognate FimC–FimH substrate. Nature, 2011; 474 (7349): 49 DOI: 10.1038/nature10109

Cite This Page:

DOE/Brookhaven National Laboratory. "Bacterial protein secreting sticky appendages: Atomic-level images suggest new targets for antibacterial drugs." ScienceDaily. ScienceDaily, 1 June 2011. <www.sciencedaily.com/releases/2011/06/110601134251.htm>.
DOE/Brookhaven National Laboratory. (2011, June 1). Bacterial protein secreting sticky appendages: Atomic-level images suggest new targets for antibacterial drugs. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2011/06/110601134251.htm
DOE/Brookhaven National Laboratory. "Bacterial protein secreting sticky appendages: Atomic-level images suggest new targets for antibacterial drugs." ScienceDaily. www.sciencedaily.com/releases/2011/06/110601134251.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins