Featured Research

from universities, journals, and other organizations

Role of gene regulator in skeletal muscles demonstrated

Date:
June 2, 2011
Source:
Virginia Tech
Summary:
Fast muscles, such as the thigh muscle in a sprinter, deliver energy quickly but fatigue quickly. Slow muscles, such as the soleus muscle in the lower calf, are less forceful but important for posture and endurance. Researchers have discovered one gene regulator that maintains the fast muscle type and inhibits the development of a slow muscle type.

Fast muscles, such as the thigh muscle in a sprinter, deliver energy quickly but fatigue quickly. Slow muscles, such as the soleus muscle in the lower calf, are less forceful but important for posture and endurance. Researchers from the University of Texas Southwestern Medical Center and Virginia Tech have discovered one gene regulator that maintains the fast muscle type and inhibits the development of a slow muscle type.

Related Articles


The research was posted in the Proceedings of the National Academy of Sciences' online early edition on June 1 by Daniel Quiat of UT Southwestern, Kevin Voelker of Virginia Tech, Jimin Pei and Nick V. Grishin of UT Southwestern, Robert Grange of Virginia Tech, and Rhonda Bassel-Duby and Eric N. Olson of UT Southwestern.

"Based on previous studies by our group and others, we knew that a gene regulator called Sox6 promotes development of fast muscle in the embryo," said Olson, professor of molecular biology. "But the function of Sox6 in adult muscle was unknown."

By studying adult mice that lacked Sox6 in fast muscles, the researchers observed that fast muscle took on the performance attributes of slow muscles.

Virginia Tech's role in the research project was to measure muscle performance. "We demonstrated experimentally that there were functional changes that supported the development of slow muscle," said Grange, associate professor of human nutrition, food, and exercise in the College of Agriculture and Life Sciences. At Virginia Tech, he worked with Voelker, a postdoctoral associate in the department.

"The most obvious change is the speed at which muscle can shorten," said Grange. "Fast muscle shortens quickly; but, in the absence of Sox6, our measurements showed that fast muscle shortened more slowly and the muscle was less fatigued after contracting for several minutes. Both of these muscle performance changes demonstrated that a fast muscle that lacked Sox6 became more like a slow muscle."

"Skeletal muscles can adapt based on the stress imposed," explains Grange. "For example, if you lift weights, your muscles become stronger; if you run long distances, your muscles become less fatigued. What we don't yet know fully is how adaptations occur at the gene level and protein level in response to these different stresses. The current study is an important step to understand how muscle adaptation occurs."

Although applications of the new information are distant, Grange points out, "The more you know about how the body works, the easier it is to keep it healthy."

"We might be able to manipulate gene regulators by training in a certain way. We don't know what that is, but that is one of the objectives. From a muscle disease perspective, there may be characteristics that lead back to the proteins that control adaptations, such as Sox6," said Grange.

"You cannot have adaptations in the muscle unless there are changes in the genes turned on and those turned off. The genes turned on produce the proteins responsible for the muscle adaptation" he said. "The most exciting aspect of the study was that we clearly demonstrated changes in muscle function from a fast type to a slow type of skeletal muscle that was dependent on the absence of Sox6."


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Journal Reference:

  1. Daniel Quiat, Kevin A. Voelker, Jimin Pei, Nick V. Grishin, Robert W. Grange, Rhonda Bassel-Duby, Eric N. Olson. Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1107413108

Cite This Page:

Virginia Tech. "Role of gene regulator in skeletal muscles demonstrated." ScienceDaily. ScienceDaily, 2 June 2011. <www.sciencedaily.com/releases/2011/06/110602153034.htm>.
Virginia Tech. (2011, June 2). Role of gene regulator in skeletal muscles demonstrated. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2011/06/110602153034.htm
Virginia Tech. "Role of gene regulator in skeletal muscles demonstrated." ScienceDaily. www.sciencedaily.com/releases/2011/06/110602153034.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins