Featured Research

from universities, journals, and other organizations

Role of gene regulator in skeletal muscles demonstrated

Date:
June 2, 2011
Source:
Virginia Tech
Summary:
Fast muscles, such as the thigh muscle in a sprinter, deliver energy quickly but fatigue quickly. Slow muscles, such as the soleus muscle in the lower calf, are less forceful but important for posture and endurance. Researchers have discovered one gene regulator that maintains the fast muscle type and inhibits the development of a slow muscle type.

Fast muscles, such as the thigh muscle in a sprinter, deliver energy quickly but fatigue quickly. Slow muscles, such as the soleus muscle in the lower calf, are less forceful but important for posture and endurance. Researchers from the University of Texas Southwestern Medical Center and Virginia Tech have discovered one gene regulator that maintains the fast muscle type and inhibits the development of a slow muscle type.

Related Articles


The research was posted in the Proceedings of the National Academy of Sciences' online early edition on June 1 by Daniel Quiat of UT Southwestern, Kevin Voelker of Virginia Tech, Jimin Pei and Nick V. Grishin of UT Southwestern, Robert Grange of Virginia Tech, and Rhonda Bassel-Duby and Eric N. Olson of UT Southwestern.

"Based on previous studies by our group and others, we knew that a gene regulator called Sox6 promotes development of fast muscle in the embryo," said Olson, professor of molecular biology. "But the function of Sox6 in adult muscle was unknown."

By studying adult mice that lacked Sox6 in fast muscles, the researchers observed that fast muscle took on the performance attributes of slow muscles.

Virginia Tech's role in the research project was to measure muscle performance. "We demonstrated experimentally that there were functional changes that supported the development of slow muscle," said Grange, associate professor of human nutrition, food, and exercise in the College of Agriculture and Life Sciences. At Virginia Tech, he worked with Voelker, a postdoctoral associate in the department.

"The most obvious change is the speed at which muscle can shorten," said Grange. "Fast muscle shortens quickly; but, in the absence of Sox6, our measurements showed that fast muscle shortened more slowly and the muscle was less fatigued after contracting for several minutes. Both of these muscle performance changes demonstrated that a fast muscle that lacked Sox6 became more like a slow muscle."

"Skeletal muscles can adapt based on the stress imposed," explains Grange. "For example, if you lift weights, your muscles become stronger; if you run long distances, your muscles become less fatigued. What we don't yet know fully is how adaptations occur at the gene level and protein level in response to these different stresses. The current study is an important step to understand how muscle adaptation occurs."

Although applications of the new information are distant, Grange points out, "The more you know about how the body works, the easier it is to keep it healthy."

"We might be able to manipulate gene regulators by training in a certain way. We don't know what that is, but that is one of the objectives. From a muscle disease perspective, there may be characteristics that lead back to the proteins that control adaptations, such as Sox6," said Grange.

"You cannot have adaptations in the muscle unless there are changes in the genes turned on and those turned off. The genes turned on produce the proteins responsible for the muscle adaptation" he said. "The most exciting aspect of the study was that we clearly demonstrated changes in muscle function from a fast type to a slow type of skeletal muscle that was dependent on the absence of Sox6."


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Journal Reference:

  1. Daniel Quiat, Kevin A. Voelker, Jimin Pei, Nick V. Grishin, Robert W. Grange, Rhonda Bassel-Duby, Eric N. Olson. Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1107413108

Cite This Page:

Virginia Tech. "Role of gene regulator in skeletal muscles demonstrated." ScienceDaily. ScienceDaily, 2 June 2011. <www.sciencedaily.com/releases/2011/06/110602153034.htm>.
Virginia Tech. (2011, June 2). Role of gene regulator in skeletal muscles demonstrated. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2011/06/110602153034.htm
Virginia Tech. "Role of gene regulator in skeletal muscles demonstrated." ScienceDaily. www.sciencedaily.com/releases/2011/06/110602153034.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins