Featured Research

from universities, journals, and other organizations

Neuroscientists map a new target to wipe pain away

Date:
June 5, 2011
Source:
Indiana University School of Medicine
Summary:
Researchers have discovered a peptide that short circuits a pathway for chronic pain. Unlike current treatments this peptide does not exhibit deleterious side effects such as reduced motor coordination, memory loss, or depression, according to a new study.

A newly discovered peptide short circuits a pathway for chronic pain.
Credit: iStockphoto/Sebastian Meckelmann

Researchers at the Indiana University School of Medicine have discovered a peptide that short circuits a pathway for chronic pain. Unlike current treatments this peptide does not exhibit deleterious side effects such as reduced motor coordination, memory loss, or depression, according to an article in Nature Medicine posted online June 5, 2011.

Related Articles


The peptide, CBD3, has been shown in mice to interfere with signals that navigate calcium channels to produce pain. Unlike other substances that block pain signals, CBD3 does not directly inhibit the influx of calcium. This is important as influx of calcium regulates heart rhythm and vital functions in other organs.

Rajesh Khanna, Ph.D., assistant professor of pharmacology and toxicology at the Indiana University School of Medicine, said the peptide discovered by him and his colleagues is potentially safer to use than addictive opioids or cone snail toxin Prialtฎ -- a recognized analgesic that is injected into the spinal column, both of which can cause respiratory distress, cardiac irregularities and other problems.

"After opioids-the gold standard for pain control -- the next target is calcium channels," said Dr. Khanna. "Along the pain pathway in the spinal cord, there are pain-sensing neurons called nociceptors that have an abundance of calcium channels."

Earlier international research has shown that the calcium channel is a key player within the pathway for pain signals. Based on work from Dr. Khanna's laboratory, it is also accepted that an axonal protein, CRMP-2, binds to the calcium channel "acting like a remote control" to modulate transmission of excitability and pain signals, Dr. Khanna explained.

He and his colleagues discovered the CBD3 peptide, a portion of the CRMP-2 protein, realizing that its smaller size would be beneficial in producing a synthetic version for drug development.

CBD3 can be given systemically and blocks pain in a variety of acute as well as chronic pain models, he said. The novel peptide binds to the calcium channel and reduces the number of excitability signals without disrupting the beneficial global calcium flow. Upon reaching the brain, these signals are interpreted as the sensation of pain.

"Since our approach does not directly inhibit calcium entry through voltage-gated channels, we expect that this molecule will be more specific and have fewer side effects than currently available analgesics," said Dr. Khanna. "We anticipate that this peptide will serve as a novel pharmacological therapeutic for the relief of chronic pain."

Dr. Khanna is a primary investigator in the Paul and Carole Stark Neurosciences Research Institute and the Indiana Spinal Cord and Brain Injury Research Group. His Stark Neuroscience Institute colleagues involved in the research are first author Joel M. Brittain and second author Sarah M. Wilson, both PhD students in his laboratory, and co-first-author Djane B. Duarte, Ph.D., a post-doctoral fellow. Members of the Harvard University Department of Anesthesiology also assisted with the research.

Funding for the research was provided in part by a American Heart Association National Scientist Development Grant, the Ralph W. and Grace M. Showalter Research Trust Fund and the Indiana Genomics Initiative.


Story Source:

The above story is based on materials provided by Indiana University School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Joel M Brittain, Djane B Duarte, Sarah M Wilson, Weiguo Zhu, Carrie Ballard, Philip L Johnson, Naikui Liu, Wenhui Xiong, Matthew S Ripsch, Yuying Wang, Jill C Fehrenbacher, Stephanie D Fitz, May Khanna, Chul-Kyu Park, Brian S Schmutzler, Bo Myung Cheon, Michael R Due, Tatiana Brustovetsky, Nicole M Ashpole, Andy Hudmon, Samy O Meroueh, Cynthia M Hingtgen, Nickolay Brustovetsky, Ru-Rong Ji, Joyce H Hurley, Xiaoming Jin, Anantha Shekhar, Xiao-Ming Xu, Gerry S Oxford, Michael R Vasko, Fletcher A White, Rajesh Khanna. Suppression of inflammatory and neuropathic pain by uncoupling CRMP-2 from the presynaptic Ca2+ channel complex. Nature Medicine, 2011; DOI: 10.1038/nm.2345

Cite This Page:

Indiana University School of Medicine. "Neuroscientists map a new target to wipe pain away." ScienceDaily. ScienceDaily, 5 June 2011. <www.sciencedaily.com/releases/2011/06/110605132425.htm>.
Indiana University School of Medicine. (2011, June 5). Neuroscientists map a new target to wipe pain away. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2011/06/110605132425.htm
Indiana University School of Medicine. "Neuroscientists map a new target to wipe pain away." ScienceDaily. www.sciencedaily.com/releases/2011/06/110605132425.htm (accessed October 30, 2014).

Share This



More Health & Medicine News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) — A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Google To Use Nanoparticles, Wearables To Detect Disease

Google To Use Nanoparticles, Wearables To Detect Disease

Newsy (Oct. 29, 2014) — Google X wants to improve modern medicine with nanoparticles and a wearable device. It's all an attempt to tackle disease detection and prevention. Video provided by Newsy
Powered by NewsLook.com
Can Drinking Milk Lead To Early Death?

Can Drinking Milk Lead To Early Death?

Newsy (Oct. 29, 2014) — Researchers in Sweden released a study showing heavy milk drinkers face an increased mortality risk from a variety of causes. Video provided by Newsy
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) — Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins