Featured Research

from universities, journals, and other organizations

Tuning 'metasurface' with fluid in new concept for sensing and chemistry

Date:
June 13, 2011
Source:
National Institute of Standards and Technology (NIST)
Summary:
Researchers have demonstrated a unique fluid-tuned "metasurface," a concept that may be useful in biomedical sensors and microwave-assisted chemistry.

NIST's fluid-tunable "metasurface" consists of copper structures and plastic tubing mounted on composite board. The presence of water in the tubing changes the resonant frequency at which the metasurface absorbs and stores energy.
Credit: NIST

Like an opera singer hitting a note that shatters a glass, a signal at a particular resonant frequency can concentrate energy in a material and change its properties. And as with 18th century "musical glasses," adding a little water can change the critical pitch. Echoing both phenomena, researchers at the National Institute of Standards and Technology (NIST) have demonstrated a unique fluid-tuned "metasurface," a concept that may be useful in biomedical sensors and microwave-assisted chemistry.

A metasurface or metafilm is a two-dimensional version of a metamaterial, popularized recently in technologies with seemingly unnatural properties, such as the illusion of invisibility. Metamaterials have special properties not found in nature, often because of a novel structure. NIST's metasurface is a small piece of composite circuit board studded with metal patches in specific geometries and arrangements to create a structure that can reflect, store, or transmit energy (that is, allow it to pass right through).

As described in a new paper, NIST researchers used purified water to tune the metasurface's resonant frequency -- the specific microwave frequency at which the surface can accumulate or store energy. They also calculated that the metasurface could concentrate electric field strength in localized areas, and thus might be used to heat fluids and promote microwave-assisted chemical or biochemical reactions.

The metasurface's behavior is due to interactions of 18 square copper frame structures, each 10 millimeters on a side (see photo). Computer simulations help design the copper squares to respond to a specific frequency. They are easily excited by microwaves, and each one can store energy in a T-shaped gap in its midsection when the metasurface is in a resonant condition. Fluid channels made of plastic tubing are bonded across the gaps. The sample is placed in a waveguide, which directs the microwaves and acts like a kaleidoscope, with walls that serve as mirrors and create the electrical illusion that the metasurface extends to infinity.

Researchers tested the metasurface properties with and without purified water in the fluid channels. The presence of water shifted the resonant frequency from 3.75 to 3.60 gigahertz. At other frequencies, the metasurface reflects or transmits energy. Researchers also calculated that the metasurface, when in the resonant condition, could concentrate energy in the gaps at least 100 times more than the waveguide alone.

Metasurface/fluid interactions might be useful in tunable surfaces, sensing and process monitoring linked to changes in fluid flow, and catalysis of chemical or biochemical reactions in fluid channels controlled by changes in microwave frequency and power as well as fluid flow rates. NIST researchers are also looking into the possibility of making metamaterial chips or circuits to use for biomedical applications such as counting cells.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Gordon, C. Holloway, J.C. Booth, J.R. Baker-Jarvis, D. Novotny, S. Kim and Y. Wang. Fluid interactions with metafilm/metasurfaces for tuning, sensing, and microwave assisted chemical processes. Physical Review B, 83, 205130 (2011) DOI: 10.1103/PhysRevB.83.205130

Cite This Page:

National Institute of Standards and Technology (NIST). "Tuning 'metasurface' with fluid in new concept for sensing and chemistry." ScienceDaily. ScienceDaily, 13 June 2011. <www.sciencedaily.com/releases/2011/06/110608123012.htm>.
National Institute of Standards and Technology (NIST). (2011, June 13). Tuning 'metasurface' with fluid in new concept for sensing and chemistry. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2011/06/110608123012.htm
National Institute of Standards and Technology (NIST). "Tuning 'metasurface' with fluid in new concept for sensing and chemistry." ScienceDaily. www.sciencedaily.com/releases/2011/06/110608123012.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins